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PREFACE

The 16th international mathematics competition “Duel” took
place in Přerov at the beginning of April 2008.

This competition started in 1993, two teams of mathematically
gifted high school students (GMK Bı́lovec and I LO Chorzów, Poland)
participated in its first run in Bı́lovec. The competition included only
two high school categories. The team of BRG Kepler in Graz (Aus-
tria) has joined since the 5th year of the competition (1997) and the
competition has changed into three-lateral. Its organization changes
cyclically (Bı́lovec, Chorzów, Graz). The name of the competition
stayed the same with a bit change meaning of this word (duel = fight)
only. Organizing schools of given year invited some guest teams usu-
ally. The structure of the competition has not changed since its 3rd
year. Students of the last two years of eight-year grammar school
solve A category, fifth and sixth graders solve B category, and con-
testants of lower grammar school of the same school solve the lowest
C category. The competition takes place in two parts in all three cat-
egories—an individual competition and a team competition. Each
school is represented in individual competition by four contestants.
Special problems are prepared for each category. The text of given
problems is introduced to contestants in English, but the solutions
and the results can be written in their mother tongue.

Six schools took part in the 16th run of the competition, besides
the three traditional schools, there were also three schools from the
region of Olomouc (Jakub Škoda Gymnasium in Přerov—as the or-
ganizer school, Slavic Gymnasium in Olomouc and Gymnasium Olo-
mouc–Hejčı́n). The total number of the contestants in the 16th year
of Mathematical Duel was 72 then. The competition runs in this
extent mainly due the supporting by a grant of MŠMT ČR, NPV II,
No. 2E06029, STM Morava.

Authors
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PROBLEMS



CATEGORY A (INDIVIDUAL COMPETITION)

A–I–1

Show that

n =
20083 + 20073 + 3 ⋅ 2008 ⋅ 2007 − 1

20092 + 20082 + 1
is an integer and determine its value.

A–I–2

The orthocenter H of an acute-angled triangle ABC is reflected on
the sides a, b and c yielding points A1, B1 and C1, respectively. We
are given that

| 6 C1AB1| = | 6 CA1B|, | 6 A1BC1| = | 6 AB1C| and | 6 B1CA1| = | 6 BC1A|

hold. Prove that ABC must be the equilateral triangle.

A–I–3

Let a, b, c be arbitrary positive real numbers such that abc = 1.
Prove that the inequality

a
ab + 1

+
b

bc + 1
+

c
ca + 1

≥
3
2

holds. When does the equality hold?

A–I–4

Let ABCD be a tetrahedron with all three mutually perpendicular
edges at its vertex D. Further let us denote S the center of its
circumscribed sphere. Prove that the centroid T of its face ABC lies
on the line DS.
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CATEGORY A (TEAM COMPETITION)

A–T–1

Determine all triples (x, y, z) of positive integers such that the equal-
ity

3 + x + y + z = xyz

holds.

A–T–2

Let D be a point on the side BC of the given triangle ABC such that

|AB| + |BD| = |AC| + |CD|

holds. The line segment AD intersects the incircle of the triangle
ABC at X and Y with X closer to A. Let E be the point of tangency of
the incircle of the triangle ABC with its side BC. Show that

a) The line EY is perpendicular to AD.
b) The equality |XD| = 2 |IM| holds (I denotes the incentre of the

triangle ABC and M is the midpoint of the line segment BC).

A–T–3

Let Z and R denote the sets of all integers and real numbers, respec-
tively. Determine all functions f : Z → R such that the condition

f (3x − y) ⋅ f (y) = 3 f (x)

is fulfilled for all integers x and y.
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CATEGORY B (INDIVIDUAL COMPETITION)

B–I–1

Show that

m =
20084 + 20082 + 1
20082 + 2008 + 1

is an integer and determine its value.

B–I–2

Determine all positive integers n for which there exist positive inte-
gers x and y satisfying

x + y = n2,

10x + y = n3.

B–I–3

Let ABCD be a trapezoid (AB ‖ CD) of unit area, with |AB| = 2 |CD|.
Further let K and L be midpoints of its sides BC and CD respectively.
Determine the area of the triangle AKL.

B–I–4

The first (lead) digit of a positive integer N is 3. If we write the same
integer without the lead digit 3, we obtain an integer M.

a) Determine all such integers N, for which N = A ⋅ M holds with
A = 25.

b) Determine two further positive integers A 6= 25 for which such
integers N and M exist.

c) Prove that no such integers N and M exist for A = 32.
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CATEGORY B (TEAM COMPETITION)

B–T–1

Let ABCD be a convex quadrilateral in the plane. Further let K, L,
M and N be midpoints of its sides AB, BC, CD and DA respectively.

a) Prove that there exists a triangle with sides of lengths KL, KM
and KN.

b) Determine its area Q depending on the area P of the quadrilat-
eral ABCD.

B–T–2

The average (arithmetic mean) of 10 positive integers is 2 008.

a) What is the largest possible number among them and what is
the smallest?

b) If 304 is one of the numbers, what is largest possible number
among them and what is the smallest?

c) If we know that all 10 positive integers are different, what is
the largest and smallest possible value for the largest of the 10
positive numbers?

B–T–3

Of the triples (4, 6, 8), (4, 8, 9) and (5, 12, 13) only one can be inter-
preted as giving the lengths of the three altitudes of a triangle ABC.

a) State which of these triples can give the altitudes of a triangle.
b) Give a compass and staight-edge (euclidean) construction for

the triangle whose altitudes are given by the triple (in cm), and
prove that the construction is complete.
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CATEGORY C (INDIVIDUAL COMPETITION)

C–I–1

Determine the number of all triangles with integer-length sides, such
that two of sides are lengths of m and n (1 ≤ m ≤ n). Solve this
problem for the specific values m = 6 and n = 9 and then for general
values.

C–I–2

We are given two parallels p and q in the plane. Let us consider the
set A of 13 different points such that 7 of them lie on p and the other
6 lie on q.

a) How many segment lines form the points of the set A (as end-
points of segment lines)?

b) How many triangles form the points of the set A (as vertices of
triangles)?

C–I–3

Determine the smallest positive integers x and y such that the equal-
ity

12x = 25y2

holds.

C–I–4

Prove that all three medians of the given triangle cut this triangle
into six smaller triangles of the same area.
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CATEGORY C (TEAM COMPETITION)

C–T–1

The line segment XY with |XY | = 2 is common (main) diagonal of
a regular hexagon and a square. Determine the area of the section
common to both figures.

C–T–2

Let a, b, c be real numbers. Prove that

V = 4(a2 + b2 + c2) − [(a + b)2 + (b + c)2 + (c + a)2]

is always non-negative real valued and determine all values of a, b,
c for which V = 0 holds.

C–T–3

We are given a board composed of 16 unit squares as shown. We wish
to colour some of the cells green in such a way that, no matter where
we place the T-shaped tetromino on the board (with each square of
of the tetromino covering exactly one square on the board), at least
one square of the tetromino will be on a green cell. Determine the
smallest possible number of cells we must colour green and prove
that this is the smallest number.
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SOLUTIONS



CATEGORY A (INDIVIDUAL COMPETITION)

A–I–1

Substituting x = 2008, we obtain

n =
x3 + (x − 1)3 + 3x(x − 1) − 1

(x + 1)2 + x2 + 1

=
2x3 − 2

2x2 + 2x + 2
= x − 1

and therefore n = 2008 − 1 = 2007.

A–I–2

Naming | 6 CAB| = α , | 6 ABC| = β and | 6 BCA| = γ , we first note that
| 6 BA1C| = | 6 BHC| = 180◦ − | 6 HBC| − | 6 HCB| = 180◦ − (90◦ − γ) − (90◦ −
− β ) = β + γ holds. Since α = 180◦ − (β + γ), we see that A1 must lie
on the circumcircle of ABC. (This fact is well known.) Similarly, B1
and C1 must also lie on the circumcircle of ABC, and we therefore
have | 6 CAB1| = | 6 CBB1| = 90◦ − γ and | 6 BAC1| = | 6 BCC1| = 90◦ − β .
It therefore follows that | 6 C1AB1| = α + 90◦ − γ + 90◦ − β = 2α . Since
| 6 C1AB1| = | 6 CA1B|, we therefore have 2α = β + γ = 180◦ − α , and
therefore α = 60◦.

A B

C

A1

B1

C1

H
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Since the same holds for β and γ , the triangle ABC must be
equilateral.

A–I–3

Since abc = 1 there exist positive real numbers x, y, z such that a = x
y ,

b = y
z , c = z

x . Then

a
ab + 1

+
b

bc + 1
+

c
ca + 1

=
x
y

x
z + 1

+
y
z

y
x + 1

+
z
x

z
y + 1

=

=
zx

xy + yz
+

xy
zx + yz

+
yz

xy + zx
≥

3
2

where the inequality follows from so-called Nesbitt’s inequality which
is well-known in the following form: For arbitrary positive real num-
bers r, s, t

r
s + t

+
s

t + r
+

t
r + s

≥
3
2

holds, with equality in the case r = s = t.
Therefore, equality holds (in the given problem) iff

a = b = c = 1.

A–I–4

We can use a Cartesian coordinate system Oxyz such that D = O
and the edges DA, DB and DC lie on axes x, y and z, respectively.
Let a, b, c be the lengths of edges DA, DB and DC, respectively. The
center S of the circumsphere of the tetrahedon ABCD has coordinates
[ 1

2 a, 1
2 b, 1

2 c]. For each point P[x, y, z] of the ray DS the following two
conditions are fullfiled

xc = az and yc = bz.

Therefore the ray DS passes through the point T[ 1
3 a, 1

3 b, 1
3 c] which

is the centroid of the face ABC of given tehrahedron ABCD and the
proof is finished.
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CATEGORY A (TEAM COMPETITION)

A–T–1

By symmetry, we can assume without loss of generality, that 1 ≤ x ≤
≤ y ≤ z holds.

If x = 1, the equation can be expressed as y+4 = z(y−1) (which is
incorrect for y = 1), and we therefore have z = y+4

y−1 = 1 + 5
y−1 for y > 1.

For y = 2, we get z = 6, and since 3+1+2+6 = 12 is a true statement,
we see that all permutations of (1; 2; 6) are solutions of the equation.
We shall now show that there are no others.

Staying with the case x = 1, we note that z(y) = 1+ 5
y−1 is decreas-

ing. z(3) = 7
2 is not an integer, and z(4) = 8

3 is smaller than y = 4.
Since z(y) is decreasing, the existence of any further solutions would
contradict y ≤ z.

For x = 2, we obtain

z(y) =
y + 5
2y − 1

=
1
2

+
7

2y − 1
.

We see that z(2) = 7
3 is not an integer, and since z(3) = 8

5 < 3, any
further solutions in this case would once more contradict y ≤ z

For any given x ≥ 3, we similarly obtain

z(y) =
y + (x + 3)

xy − 1
=

1
x

+
x + 3 + 1

x
xy − 1

,

which is once again decreasing. For y = x, we have

z(y) =
2x + 3
x2 − 1

=
2

x + 1
+

1
x2 − 1

,

which is also decreasing as a function in x, and since z(3) = 9
8 is

already smaller than 3, there can certainly be no further solutions
of the equation in positive integers.
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A–T–2

a) The homothety mapping the excircle at the side BC of triangle
ABC (tangent to BC at the point D) to the incircle of the same
triangle maps the point D to X. Therefore a tangent at X is
parallel to BC. XE is therefore a diameter of the incircle and
thus XYE is a right angle.

b) By easy computation we obtain |BE| = |DC| = s − b, where 2s =
= a + b + c. So M is the midpoint of the segment ED again. Thus,
by the midpoint theorem |XD| = 2 |IM| holds.

B C

A

E M
D

Y

I

X

A–T–3

Let f be any such function. Setting x = y = 0 we get f (0) ∈ {0, 3}.
If f (0) = 0, we set y = 0 and get f (x) = 0, so f (x) ≡ 0 is the first

solution.
Let f (0) = 3. We set x = 0 and get f (y)f (−y) = 9, particularly

f (y) 6= 0 for all integers y. When we set x = y 6= 0 we get f (2x) = 3.
Thus f (x) = 3 for all even x. Setting y = 4x gives f (−y) = f (y). Since
f (y)f (−y) = 9, it follows that f (y) ∈ {−3, 3} and f is an even function.

Setting x = 1, y = 2t + 1 (t is an integer) we get

f (2 − 2t) ⋅ f (2t + 1) = 3f (1)

from which it follows that f (2t + 1) = f (1). Checking we see that
f (x) ≡ 3 is the second solution and f (x) =

{ 3 x even
−3 x odd

is the third
solution.
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CATEGORY B (INDIVIDUAL COMPETITION)

B–I–1

Noting that (x4 + x2 + 1) : (x2 + x + 1) = x2 − x + 1, we only need to
substitute x = 2008 to obtain M = 4030057.

B–I–2

From the first equation y = n2 − x and substituting to the second
equation we obtain 9x = n2(n − 1). The left side is divisible by 3.

Let us consider two possible cases:

. n is divisible by 3, i.e. n = 3k for k ∈ N. Then

9x = 9k2(3k − 1), x = k2(3k − 1) = 3k3 − k2

and
y = (3k)2 − (3k3 − k2) = 10k2 − 3k3.

Because y ≥ 1 then 10k2 − 3k3 ≥ 1, k2(10 − 3k) ≥ 1 and it
follows that 10 − 3k ≥ 1, k ≤ 3.

Then k ∈ {1, 2, 3} and n ∈ {3, 6, 9}. For this n the x and y
are positive integer numbers.

. n − 1 is divisible by 3.
Then n is not divisible by 3 and n − 1 is divisible by 9. We

obtain n − 1 = 9m for some nonnegative integer m. Then n =
= 9m + 1,

9x = (9m + 1)2 ⋅ 9m, x = m(9m + 1)2, y = n2 − x,
y = (9m + 1)2 − m(9m + 1)2 = (9m + 1)2(1 − m).

Because y ≥ 1, then (9m + 1)2(1 − m) ≥ 1 and it follows 1 − m ≥ 1,
m ≤ 0. It is impossible for m ∈ N.

The solution of the system has in positive integers is therefore
possible for n = 3, 6, 9.

Another solution. Analogically to the above x = 1
9 n2(n − 1). Let

us consider three possible cases:

. n = 3k, k ∈ Z. Then x = 1
9 ⋅ 9k2(3k − 1) = k2(3k − 1) ∈ Z.
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. n = 3k + 1, k ∈ Z. Then

x =
1
9

(9k2 +6k+1)(3k−1) =
1
9

(27k3 +9k2 −3k−1) = 3k3 +k2 −
3k + 1

9
6∈ Z.

. n = 3k + 2, k ∈ Z. Then

x =
1
9

(9k2 + 12k + 4)(3k − 1) =
1
9

(27k3 + 9k2 − 4) = 3k3 + 3k2 −
4
9
6∈ Z.

Then there must be n = 3k for k ∈ N. From the first solution
x = k2(3k − 1). Because y ≥ 1 and y = 10k3 − 3k2 = k2(10k − 3), then
10 − 3k ≥ 1 and we obtain k ≤ 3.

Then k ∈ {1, 2, 3} and n ∈ {3, 6, 9}. For the parameters n ∈
∈ {3, 6, 9} the solutions x and y are positive integer numbers.

Another solution. From the first solution we have x = 1
9 n2(n − 1),

x ∈ N, then n − 1 ≥ 1 and n ≥ 2. Therefore y = n2

9 (10 − n). From y ≥ 1
it follows 10 − n ≥ 1, i.e. n ≤ 9.

It may be verified that for an integer n, 2 ≤ n ≤ 9 only for
n ∈ {3, 6, 9} x and y are positive integer numbers.

B–I–3

From the picture we can see that the areas of the triangles ABC,
BCD and CDA are 2

3 , 1
3 and 1

3 , respectively. Thus, for the area S of
the triangle AKL we have

S = SABCD − SABK − SADL − SCLK = 1 −
1
2

⋅
2
3

−
1
2

⋅
1
2

−
1
4

⋅
1
2

=
5
12

.

A B

CD

K

L
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B–I–4

The given condition can be written as n = 3 ⋅ 10k + m = am.

a) For a = 25, we have

3 ⋅ 10k + m = 25 ⋅ m ⇐⇒ 3 ⋅ 10k = 24m

⇐⇒ 10k = 8m

⇐⇒ 125 ⋅ 10k−3 = m,

and the required numbers are given by

n = 3125, 31250, 312500, . . .

b) Two examples are a = 31, for which we get

n = 31, 310, 3100, . . .

and a = 13, for which we get 10k = 4m ⇐⇒ 25 ⋅ 10k−2 = m, and
therefore

n = 325, 3250, 32500, . . .

c) a = 32 yields 3 ⋅ 10k = 31 ⋅ a, which is impossible, since 31 cannot
be a divisor of 3 ⋅ 10k.

CATEGORY B (TEAM COMPETITION)

B–T–1

First of all, we can see that the quadrilateral KLMN is a parallelo-
gram (the so-called Varignon’s parallelogram).

a) Since the sides KL and MN of the parallelogram KLMN are of
equal length, the triangle KMN exists whose sides are congruent
with line segments KL, KM and KM. This concludes our proof.

b) For the area Q of the parallelogram KLMN we have

Q = P −
1
4

P −
1
4

P =
1
2

P.
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A
B

C

D

K

L

M

N

B–T–2

If the average of ten numbers is 2008, their sum is 10 ⋅ 2008 = 20080.
a) Since all numbers are positive integers, the smallest value for

any of them is 1. If nine of the numbers are as small as possible,
i.e. equal to 1, the tenth can be 20080 − 9 ⋅ 1 = 20071, and this is the
largest possible number.

b) If one of the numbers is 304, the sum of the other 9 is 20080 −
− 304 = 19776. Choosing 8 ones (once more the smallest possible),
the largest possible number is 19776 − 8 ⋅ 1 = 19768.

c) In order to obtain the largest possible number, we must choose
the other 9 as small as possible. These are 1, 2, . . . , 9, and the sum
of these numbers is 45. The largest possible number in this case is
therefore 20080 − 45 = 20035.

In order for the largest number to as small as possible, the
numbers must vary as little as possible from 2008. Consider the
numbers

2003, 2004, 2005, 2006, 2007, 2009, 2010, 2011, 2012, 2013.

Their sum is 20080, and their average therefore 2008. If the largest
number (2013) is made smaller, some other number must be made
larger by the same amount without resulting in some number being
in the list twice. It is possible to reduce by 5 (to 2008), but then some
other number must be raised by 5, yielding either a number already
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in the list or a number larger than 2012. If it is reduced by more than
10, some other number must be enlarged by more than 10, yielding
a number larger than 2012. We see that the smallest possible value
for the largest number in the list is 2013.

B–T–3

Since aha = bhb = chc = 2A, we have a = 2A
ha

, b = 2A
hb

and c = 2A
hc

, and
the triangle inequality therefore yields

a < b + c ⇒
1
ha

<
1
hb

+
1
hc

.

Since 1
5 < 1

12 + 1
13 and 1

4 < 1
8 + 1

9 are both incorrect, the triples (4, 8, 9)
and (5, 12, 13) cannot denote the altitudes of triangles. The inequal-
ity does, however hold for the triple (4, 6, 8).

Since the sides of a triangle with altitudes (4, 6, 8) must be in
the ratio 1

4 : 1
6 : 1

8 = 6 : 4 : 3, one possible construction is to construct
any triangle whose sides are in this proportion and then expand or
contract such that one of the altitudes assumes the appropriate size.
(Parallel line to the side whose distance is equal to the altitude; then
application of homothety from one of the vertices.)

CATEGORY C (INDIVIDUAL COMPETITION)

C–I–1

In the general case observe that the length of the third side is greater
than n + m − 1 and less then n − m + 1. Between n + m − 1 and n − m + 1
we have (n + m − 1) − (n − m + 1) + 1 = 2m − 1 positive integer numbers.

The number of considered triangles is therefore 2m − 1.
In the particular case m = 6 and n = 9 there are 11 triangles.
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C–I–2

a) For one point from A we may form 12 segments. For 13 points
from A it is possible form 13 ⋅ 12 = 156 segments, but every segment
was counted twice, we therefore only have 78 segments.

b) Observe that for 7 points from the line p it is possible to form
7⋅6
2 = 21 different segments. If the third vertex of the triangle is on

the line q, it is possible to form 21 ⋅ 6 = 126 triangles.
It is impossible to form a triangle if all three points lie on the

line p or the line q.
Analogically for 6 points from the line q it is possible to form

6⋅5
2 = 15 different segments. If the third vertex of the triangle is from

the line p, then it is possible to form 15 ⋅ 7 = 105 triangles.
It is possible to form 126 + 105 = 231 different triangles with

vertices from the set A.

C–I–3

The right side of the equation is divisible by 25 and we therefore have
x = 25n for some n ∈ N. Then 12n = y2 and the left side of the above
equation is divisible by 6, i.e. y = 6m for some m ∈ N. We obtain
n = 3m2 and the right side is divisible by 3. Then n = 3p for p ∈ N

and p = m2. Because the numbers x and y must be the smallest, we
have p = m = 1.

Since x = 25 ⋅ n = 25 ⋅ 3 ⋅ p = 75, y = 6 ⋅ m = 6, the solution is

x = 75 and y = 6.

C–I–4

Let T be the centroid of the triangle ABC (see the picture) and K,
L, M be the midpoints of its sides BC, CA, AB, respectively. Since
the line segments BK and CK are congruent, the triangles BKT and
CKT have the same area x. Similarly, the triangles CLT and ALT
have the same area y, and the triangles AMT and BMT have the
area z. Since ABKL is a trapezoid we have x = y. Analogously we
can prove y = z, which yields x = y = z and the proof is finished.
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A B

C

KL

M

T

x

x

y

y

z z

CATEGORY C (TEAM COMPETITION)

C–T–1

The section in question results from the square by cutting off two
right-angled isosceles triangles with side-length x. Its area is there-
fore equal to 2 − x2.

In oder to determine x, we note that the altitude of the right-an-
gled isosceles triangle is 1 −

√
3

2 . We therefore have x =
√

2 ⋅
(

1 −
√

3
2

)

,
and the area is equal to

2 −

(

√
2 ⋅

(

1 −
√

3
2

))2

= 2
√

3 −
3
2

.
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C–T–2

Rewriting the right-hand side of the expresion V we obtain

V = 4(a2 + b2 + c2) − [(a + b)2 + (b + c)2 + (c + a)2] =

= 2a2 + 2b2 + 2c2 − 2ab − 2bc − 2ca =

= (a − b)2 + (b − c)2 + (c − a)2.

It is clear that the last sum is non-negative (for any real numbers
a, b, c). Moreover, V = 0 if and only if a = b = c.

C–T–3

The smallest number of cells is 4. If we colour the four cells as shown
in the diagramm, any placement of the polyomino will cover one of
these green cells.

No smaller number is possible, since the board can be cut into
the four parts shown in the shape of the given polyomino, no two of
which have a common cell.
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RESULTS



CATEGORY A (INDIVIDUAL COMPETITION)

Rank Name School 1 2 3 4 ∑
1. Miroslav Klimoš GMK Bı́lovec 8 8 8 8 32

2. Jitka Novotná GMK Bı́lovec 8 8 3 8 27

3.–4. Daniel Steuber BRG Kepler Graz 8 8 2 0 18
Florian Andritsch BRG Kepler Graz 8 8 1 1 18

5.–6. Dagmar Plháková GJŠ Přerov 8 5 3 0 16
Lucie Mohelnı́ková GMK Bı́lovec 8 8 0 0 16

7. Dita Přikrylová GJŠ Přerov 8 1 6 0 15

8.–9. Marcin Brożek I LO Chorzów 8 0 3 0 11
Katharina Albert BRG Kepler Graz 8 0 3 0 11

10.–12. Eliška Nekvapilová GMK Bı́lovec 8 0 2 0 10
Martin Ministr G Olomouc–Hejčı́n 8 0 2 0 10
Lukas Andritsch BRG Kepler Graz 8 1 1 0 10

13. Petra Chytilová SG Olomouc 8 0 1 0 9

14.–16. Alena Stránská SG Olomouc 8 0 0 0 8
Radosław Dudkiewicz I LO Chorzów 8 0 0 0 8
Jakub Dubovic SG Olomouc 8 0 0 0 8

17.–19. Josef Sedláček GJŠ Přerov 1 0 1 0 2
David Kraus G Olomouc–Hejčı́n 2 0 0 0 2
Lukáš Blı́sa GJŠ Přerov 1 0 1 0 2

20. Jakub Vrtný G Olomouc–Hejčı́n 1 0 0 0 1

21.–22. Jaroslav Pernica SG Olomouc 0 0 0 0 0
Jan Grygárek G Olomouc–Hejčı́n 0 0 0 0 0

28



CATEGORY B (INDIVIDUAL COMPETITION)

Rank Name School 1 2 3 4 ∑
1.–3. Martin Broušek GJŠ Přerov 8 8 8 8 32

Simona Domesová GMK Bı́lovec 8 8 8 8 32
Jakub Solovský GMK Bı́lovec 8 8 8 8 32

4. Joanna Kołodziej I LO Chorzów 8 8 8 7 31

5. Igor Sikora I LO Chorzów 8 6 8 8 30

6.–7. Paweł Gomoluch I LO Chorzów 8 5 8 7 28
Krzysztof Chrobak I LO Chorzów 8 4 8 8 28

8. Paweł Golda I LO Chorzów 8 4 8 6 26

9. Marie Kročová GJŠ Přerov 1 3 8 8 20

10.–11. Petr Boroš GMK Bı́lovec 1 8 4 3 16
Radim Dudek G Olomouc–Hejčı́n 0 2 6 8 16

12.–13. Adéla Indráková G Olomouc–Hejčı́n 0 2 6 7 15
Wojciech Lis I LO Chorzów 8 0 2 5 15

14. Simeon Kanya BRG Kepler Graz 8 6 0 0 14

15. Tamara Skokánková G Olomouc–Hejčı́n 0 0 4 6 10

16. Věra Kumová GJŠ Přerov 0 8 0 1 9

17. Jakub Ehrenberger G Olomouc–Hejčı́n 3 2 0 2 7

18. Josef Malı́k GMK Bı́lovec 1 1 0 4 6

19.–20. Martin Gutjahr BRG Kepler Graz 0 0 2 2 4
Christopher Schinnerl BRG Kepler Graz 1 2 1 0 4

21.–22. Zuzana Foltisová SG Olomouc 0 1 0 2 3
Anna Kubı́čková SG Olomouc 0 1 0 2 3

23.–24. Barbora Benešová SG Olomouc 0 2 0 0 2
Christoph Schober BRG Kepler Graz 0 0 0 2 2

25. Tung Tran Thanh GJŠ Přerov 0 1 0 0 1

26. Renáta Heinzová SG Olomouc 0 0 0 0 0
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CATEGORY C (INDIVIDUAL COMPETITION)

Rank Name School 1 2 3 4 ∑
1.–2. Tomasz Cieśla G Nr 10 Chorzów 8 8 8 8 32

Tomasz Depta G Nr 10 Chorzów 8 8 8 8 32

3. Marek Teuchner GMK Bı́lovec 8 7 8 7 30

4.–5. Bernd Prach BRG Kepler Graz 7 7 8 6 28
David Juřı́k G Olomouc–Hejčı́n 4 8 8 8 28

6. Patrycja Mrowiec G Nr 11 Chorzów 8 4 8 6 26

7. Rafał Kuzior G Nr 10 Chorzów 8 8 8 0 24

8. Klára Sládečková GJŠ Přerov 3 4 8 8 23

9. Stanislav Horák GMK Bı́lovec 6 8 7 1 22

10. Gabriela Olivı́ková GJŠ Přerov 4 5 8 4 21

11. Martin Kavı́k GMK Bı́lovec 4 8 6 2 20

12. Manuel Gruber BRG Kepler Graz 6 4 8 0 18

13.–14. Eva Gocnı́ková GJŠ Přerov 2 6 7 2 17
Michaela Šmoldasová SG Olomouc 5 8 4 0 17

15. Clemens Andritsch BRG Kepler Graz 0 8 8 0 16

16. Zdeněk Přivřel G Olomouc–Hejčı́n 1 6 8 0 15

17. Florian Krach BRG Kepler Graz 0 5 8 1 14

18.–19. Kateřina Šimková SG Olomouc 6 0 4 0 10
Tomáš Majda G Olomouc–Hejčı́n 3 6 1 0 10

20. Simona Kapolková GMK Bı́lovec 3 2 2 2 9

21. Jakub Šuba SG Olomouc 0 4 4 0 8

22.–23. Kateřina Sluková G Olomouc–Hejčı́n 2 2 0 2 6
Roman Vrána SG Olomouc 0 4 0 2 6

24. David Halata GJŠ Přerov 0 0 0 0 0
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CATEGORY A (TEAM COMPETITION)

Rank School 1 2 3 ∑
1. Gymnázium Mikuláše Kopernı́ka Bı́lovec 8 8 8 24

2. BRG Kepler Graz 5 4 8 17

3. Gymnázium Jakuba Škody Přerov 6 0 0 6

4. I LO Chorzów 4 0 1 5

5. Gymnázium Olomouc–Hejčı́n 2 1 0 3

6. Slovanské gymnázium Olomouc 2 0 0 2

CATEGORY B (TEAM COMPETITION)

Rank School 1 2 3 ∑
1. Gymnázium Mikuláše Kopernı́ka Bı́lovec 8 8 4 20

2. Gymnázium Jakuba Škody Přerov 8 6 4 18

3.–4. BRG Kepler Graz 7 6 0 13
Gymnázium Olomouc–Hejčı́n 2 6 5 13

5. I LO Chorzów 0 8 4 12

6. Slovanské gymnázium Olomouc 0 5 0 5

CATEGORY C (TEAM COMPETITION)

Rank School 1 2 3 ∑
1. Gimnazjum Nr 10 Chorzów 8 8 8 24

2. Gymnázium Mikuláše Kopernı́ka Bı́lovec 6 4 8 18

3. Gymnázium Jakuba Škody Přerov 3 4 8 15

4. Slovanské gymnázium Olomouc 1 4 8 13

5. BRG Kepler Graz 2 2 8 12

6. Gymnázium Olomouc–Hejčı́n 0 0 8 8
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Kalinowski

MATHEMATICAL DUEL ’08
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