oth MIATHEMATICAL DUEL

PROBLEMS AND SOLUTIONS
(CHORZOW — MARCH 20, 2001)

A-1-1
Prove that the number

7 3,21 7

L=m*n*>—=m"n—m*n* + mn

is divisible by 42 for any integers m, n.

Solution. First we will prove that L is divisible by the prime 7. From
Fermat’s theorem it follows that the congruence a” = a (mod 7) is satisfied for
any integer a. Thus

L=m?n®* —mn—m*n* +mn=0 (mod 7).

Analogously the congruence a®> = a (mod 3), which is true by Fermat’s theo-
rem for any integer a and the prime 3, yields

L=mn—mn—mn+mn=0 (mod 3).

The proof of the divisibility L by the number 2 is obvious for reasons of parity.

Therefore the number L is divisible by the product of the primes 2, 3 and 7
(2-3-7=142).

A-1-2
Find all functions f : R — R such that the equation

f(fl@+y) = flz)+y

is satisfied for arbitrary =,y € R.

Solution. We can change x and y and obtain

f(fly+z)=fly) += forall z,y € R.

. From this functional equation immediately follows
f@)+y=f(y)+x  forall z,yeR.

Taking y = 0 we get
f(z) =2+ £(0).
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For the left side of the given equation we get the expression

f(f@+y))=fle+y+f(0) =(z+y+ f(0)+ f(0) =z +y+2f(0)

and for its the right side it holds

fla)+y=(z+f0)+y=2+y+ f0).

;From last two conditions we get f(0) = 0 and therofore f(z) =z for all x € R.
Further we see (after checking) that the unique solution of the given equation is
the function f(x) =z for all z € R.

A-1-3
Construct a quadrilateral inscribed in the circle with the radius 3 ¢m with
two opposite sides of the lengths 2 cm and 4 cm and with maximum area.

Solution. For the lengths of sides of the cyclic quadrilateral ABCD we can
consider without loss of generality |[AB| = 4cm and |CD| = 2cm. From the
adjoining figure we can see that the equalities

ILDAC| = |/DBC| =w  and  |LACB|=|/ADB|="9

hold.

Figure 1

For the given lengths of the opposite sides AB and C'D of the cyclic quadri-
lateral ABCD, ¢ and v are constant. Let M be the point of intersection of
the diagonals AC' and BD. Because w and 9 are constant |[LAMB| = w + 90 is
constant too. We note |/BAC| = ¢ and |/DBA| = 1. For the lengths of the
diagonals AC' and BD we have



|AC| = 2rsin(w + ) , |BD| = 2rsin(w + ).
The area P of the cyclic quadrilateral ABCD is given by the formula
P =3 -]AC|-|BD|-sin|/AMB| = % - 4r? -sin|LAMB| - sin(w + ¢) - sin(w + ¢) .

Because the product 3 - 472 - sin |/ AM B| is constant we will maximize
sin(w + ¢) - sin(w + 1) .

Therefore

sin(w+y) = sin(w+v) = %(cos(cp—w)—cos(go—i—wn%w)) < %(1—cos(g0+w+2w)) :

The equality holds if and only if ¢ = . This conclusion is true in the case when
ABCD is an isosceles trapezium with bases AB and CD.

The construction of the quadrilateral ABCD is then evident.

Remark. Another solution can use the Brahmagupta’s formula for the area of
a cyclic quadrilateral.

A-T-4
Let a, b, c be the lengths of the sides of a triangle. Prove that the inequality

3a® + 2bc > 2ab + 2ac

is fulfilled.
Solution. We have

3a? + 2be > 2ab + 2ac
& 3a®+ 2bc — 2ab — 2ac > 0
= a®> -V +2bc—ct+a?—2ab+b*+a’?—2ac+c? >0
— ad—-b-c’+@—-0’+(a—c)?>0
< (a—b+c)la+b—c)+(a—b)?+(a—c)*>0.

The expressions (a — b)? and (a — ¢)? are certainly non-negative, and due to
the triangle inequality, we have
a+c>b and a+b>c.
Therefore

(a—b+c)la+b—c)>0

and the result follows.



A-T-1
Prove that for arbitrary positive real numbers a, b, ¢ the inequality

1 1 1 9
>
ab(a + b) N be(b+ c) * ca(c+a) = 2(ad®+ b + c3)

is satisfied. When does equality hold ?

Solution. We consider the inequality
a® +b* > ab(a + b) = a’b + ab’

which is true for arbitrary positive real numbers a,b. We rewrite this inequality

in the form
1 1

> .
abla+0b) — a®+b?

Similarly we have (for all positive real numbers a, b, ¢)

1 S 1
be(b+c) — 0P+’

1 1
ca(c+a) — A+a’’

The sum of the last three inequalities yields

1 1 1 1 1 1
> .
ab(a + b) +bc(b—|—c) +ca(c+a) - a3+b3+b3+c3+c3+a3

Applying the arithmetic-harmonic mean inequality for the right side of the last
inequality we get

1 1 1 1 3

— > .
3<a3—|—b3 Thre c3—|—a3> — (@ +0%) + (0* + ) + (B +a?)
After easy manipulation we obtain immediately

1 1 1 9
> .
a3+b3+b3+c3+c3+a3 ~ 2(ad+ 0+

The equality holds if and only if a = b = c.

A-T-2

Let ABC' be a triangle. Equilateral triangles ABD, BC'E and CAF are drawn
outside of ABC'. Prove that the midpoints of these three triangles are the vertices
of an equilateral triangle.



Solution. Let ABD, BCE and CAF be the equilateral triangles which are
drawn outside the given triangle ABC' It is easy to see that all their circumcircles
intersect at a common point O (Fig. 2) for which it holds

|/AOB| = |/BOC| = |/COA| = 120° .

Let X,Y,Z be the midpoints of the equilateral triangles BCE, CAF, ABD,
respectively. These points are the centres of circumcircles about the triangles
ABD, BCFE and CAF too. Therefore the segment XY is perpendicular to chord
CO, Y Z is perpendicular to chord AO. Hence the angles XY Z and COA are
supplementary. Therefore it is |/ XY Z| = 60°. Analogously we can prove that
|1YZX| = |/ZXY| = 60°. So the triangle XY Z is equiangular and hence
equilateral.

D
Figure 2

A-T-3

Is it possible for three different positive integers z,y, z to exist between two
successive perfect squares, such that one is the geometric mean of the other two ?
In other words, is it possible that n? < a,b,c < (n + 1)? and ¢ = v/ab hold with
a, b, c all different ? If so, give an example. If not, prove why this is not possible.

Solution. It is not possible. In order to see this, we assume without loss of
generality n? < a < b < (n+ 1)2. We can write a = @ - r, where r does not
contain any prime factors twice, i.e. r is square-free. Since ab = ¢? is a perfect

square, we must have b = 5 - 7. Tt therefore follows that
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n<a<b<(n+1)? <= n’<a@-c<b-r<(n+1)?

_ 1 1
<=>£<a<b<7hL i—k—§i+1.
r

NG VIV T

Since r > 1, we have % > 1, and so @ and b must be different integers between

% and % + 1, which contradicts the fact that there can only be at most one

integer in this interval.

B-I-1

Determine all integers x such that
P —22"—x46
B x?—3

f(z)

is an integer.

Solution. Since 22 # 3 for x € Z, we see that

x3—3x2—x+6_x3—3:1:2—3:r+6 2

2 —3 - 72 —3 x2—3:
3 =312 -2 +6 2z 24 2x
— =T —
22 -3 22 -3 2 —3

is an integer if and only if (z? — 3)|2z. This can only be the case if |2? — 3| < |2z
i.e. for z € {—3,-2,—1,0,1,2,3}. Checking these numbers, we see that

f(2)=4 and f(3)=2

are indeed all integers, and the z for which f(x) is an integer are the elements of
{-3,-2,-1,0,1,2,3}.

B-1-2

A convex quadrilateral in the plane is given. Prove that the lines passing
through the midpoints of its opposite sides are perpendicular if and only if the
diagonals of the given quadrilateral are of the same length.



Solution.
a) First let |[AC| = |BD).

D

AN

| -
Ny~

A K B
Figure 3

From Fig. 3 we can see that KL and M N are congruent segments which
are parallel to the diagonal AC. Further we have

KL| = |MN| = }|AC].

Similarly
INK| = |LM| = %|BD].

2
According to |AC| = |BD| we get

IKL| = |LM| = |[MN| = |NK]|.

Therefore the quadrilateral K LM N is either a square or a parallelogram
with sides of the same length. Its diagonals KM and LN are therefore
perpendicular.

b) Let KM L LN.

The diagonals KM and LN of the (Varignon’s) quadrilateral KLM N are
perpendicular in this case. Because K LM N is a certainly parallelogram,
its diagonals are divided into two equal parts. This implies that the quadri-
lateral K LM N is either square or a parallelogram with all sides of the same

length. It follows that |AC| = |BD| holds.

B-1-3
Four real numbers a, b, ¢, d are given such that

b—a=c—b=d—-c.



The sum of all these numbers is 2 and the sum of their cubes is %. Determine

the numbers.

Solution. Denote 2r=b—a=c—b=d —cand m = % Then

b+c c—b b+c c—b
c= 5 + 5 =m+r, b= 53 =m—r d=m+3r, a=m—3r.
Since
a+b+c+d=2 < (m—3c)+(m—c)+(m+c)+(m+3c)=2
<— 4dm = = m=—
and

4 4
(m—3¢)*+(m—r)*+(m+r)*+(m+3r)* = 3 = 4m® +54me* +6me* = 3

4 1 4
4m3+60me? = = ~4+30c2 = = = =
— m”+0oUmc 3 — 2—l— C 3 — C 36 <~ C G’

the numbers are

B-1-4
Determine how many triples (a, b, ¢) of positive integers satisfy the following
system of inequalities

a? b? 2

<1
a2+2()c+b2+20a+02+2ab_

)

a* 4+ b* + ¢* < 2001 .
Solution. Using the following well-known inequalities
a’> +b* > 2ab, b’ +¢* > 2be, & +a® > 2ca,

which is true for any positive integers a, b, ¢, we obtain

2 2

a N b? N c S a N b? N c _
a2 +2bc b24+2ca 2+2ab T a2+b02 42 a?+b2+c2 a2+b02+c2

2 2

From the first inequality of the given system of inequalities it further follows that

a? b? c?

a2+260+62+20a+62+2ab:
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This equality implies a = b = ¢. From the second inequality of the given system
we therefore obtain the condition 3a? < 2001, i.e. a? < 667. This inequality is
fulfilled for any integer a from the set {0,1,...,25}.

The number of integer solutions of the given system of inequalities is 25. They
are all triples in the form (k, k, k), where

ke{1,2,...,25}.

B-T-1
Solve the following system of equations
Py +y*z = 254,
Yz 4+ 2% = 264,
P2r+2*y = 6
in real numbers.

Solution. Adding all these equations yields

2(x%y + vz + 2%x) = 524

or
(1) T2y + Y’z + 2% = 262.

Subtracting each of the three original equations from (1) yields the equivalent
system of equations

(2) ?r= 8,
(3) x?y = =2,
(4) y?z = 256.

Multiplying these three equations yields

(zy2)* = —4096

or
(5) zyz = —16.

Dividing (2), (3) and (4) by (5) yields

and it therefore follows that
2

z

2
y =2y (L) =-2-162=-512 = y=-8and
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Z3:y22-(§)2:256-(—%)2:64 = z=4.

B-T-2

The square ABCD with sides of length 4 cm is given. Let K and L be
the midpoints of its sides BC' and CD, respectively. Determine the area of the
quadrilateral whose sides lie on the lines AK, AC, BL and BD.

Solution.
D L C
\\ }:///
\ ~
\ -
\ ~
X
Mt~ Z\ X K
\ S
\
U\
\
A N B
Figure 4

According to the central symmetry with the centre in the point of intersection S of
the diagonals AC' and BD of the given square ABCD we consider the midpoints
M, N of the segments DA, AB, respectively. Let X,Y,Z U be the points of
intersection of the lines AK with BL, BL with CM, CM with DN, DN with
AK, respectively (see Fig. 4). By rotation with centre S and angle 90° it is
easy to see that the points X, Y, Z and U are the vertices of a square. Further,
we can compute the area of the square XYZU which is % cm?. The area of the
quadrilateral whose sides lie on the lines AK, AC, BL and BD is therefore one

quarter of the area of the square XY ZU i.e. %cm?

B-T-3
The quadratic equation az? + bx + ¢ = 0 without real roots is given such that
a+ b+ ¢ < 0. Determine the sign of the coefficient c.

Solution. Since the equation az? + bx + ¢ = 0 has no real roots, we have
b?* — 4ac < 0 and it follows that ac > %.
Let us now prove that the product of ¢ and a + b + ¢ is positive:

b2 b\’
c(a+b+c):ac—|—bc+62>Z+bc+c2: <§+c> >0.

Thus ¢ < 0, because ¢(a+b+c¢) >0and a+b+ ¢ <0.
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C-I-1
Solve in integers the equation

7(mx +3) = 3(2mz +9),

where m is a given integer. Consider all possibilities for m.

Solution. The given equation is equivalent to the equation
Tmz + 21 = 6mx + 27

or
mx =6.

For m # 0 we have z = % and m € {—6,-3,—-2,-1,1,2,3,6}. For m = 0 the
above equation has no solution.

C-1-2

The rectangle ABCD with sides of the lengths a,b (a > b) is given. Consider
the rectangle ACEF such that the vertex D lies on the segment EF'. The sides
CD, DA divide the rectangle ACEF into three triangles whose areas are in the
ratio 1 : 2 : 3. Determine the ratio a : b.

Solution. The sides CD and DA of the rectangle ABCD divide the rectangle
ACEF into three similar right-angled triangles ACD, CDE, DAF (Fig. 5) with
the areas Py, P, P3 respectively, such that the ratio P, : P, : P;=3:2:1 holds.

E
D C
F
b
A a B
Figure 5

For the lengths of their hypotenuses AC', CD, DA we therefore have
|AC|:|CD|:|DA|:\/§:\/§:1

and so
a:b=|AB|:|BC|=|CD|:|DA|=Vv2:1.
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C-1-3
Determine all pairs (m, n) of positive integers such that the conditions

(m,ny =125  and [m,n] = 10000

are satisfied; (m, n) and [m, n| denote greatest common divisor and least common
multiple of positive integers m, n, respectively.

Solution. Observe that (m,n) = 53 and [m,n] = 2* - 5%. Since we have here
exclusively the powers of the numbers 2 and 5 and (m,n) = 53, the following four
cases are only possible

(i) m=5%-5,n =52 and solution (625,2000),

(i) m = 5% - 2% ,n = 5% - 5 and solution (2000,625),

(iii) m = 5%- 2% .5, n = 5% and solution (10000,125),

(iv) m = 5%,n = 5%-2%. 5 and solution (125,10000),
and there are no other solutions.

C-14
The right-angled triangle ABC with right angle at C' is given. Let r be the
inradius of the triangle ABC'. Prove that the equality

a+b=c+2r

holds.
Solution. Let ABC' be a right-angled triangle (see Fig. 6)

B
z
z 1
r
So " y
x& r
> >
C T S y A
Figure 6

If S stands for the center of the circle inscribed in the triangle ABC' and
St, 55,53 denote the tangent points of the circle inscribed in the triangle with
the sides AB, BC,C A, respectively, then

|S3A[ = [AS,| =y,
S.B| = [BS,| = 2,
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Let us observe that C'S355, is a square, so that x = r. Note that

a+b=z4+zx+r4+y=y+z2z+2x=y+2+2r,
c+2r=z+4+y+2r,

which proves the required equalities.

C-T-1
Determine all triples (z,y, z) of prime numbers such that the conditions

r<y<z, r+y+z2="77

hold.

Solution. The prime numbers less then 77 are 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73. Among them we will seeking the
solutions of the equation satisfying r < y < z.

Let us consider the following possible cases

(i) « =2, then y+ 2 =75 and there is no solution,

(i) = = 3, then y + z = 74, and we have the solutions(3,7,67), (3,13,61),
(3,31,43),

(iii) = =5, then y+2z = 72, and we have the solutions (5,11, 61), (5,13, 59),
(5,19,53), (5,29, 43), (5,31,41),

(iv)  x =7, then y+ 2z = 70, and we have the solutions (7,11,59), (7,17, 53),
(7,23,47), (7,29, 41),

(v)  x = 11, then y + z = 66, and we have the solutions (11,13,53),
(11,19,47), (11,23,43), (11,29,37),

(vi) x = 13, then y + z = 64, and we have the solutions (13,17,47),
(13,23, 41),

(vil)  x = 17, then y + z = 60, and we have the solutions (17,19,41),
(17,23,37), (17, 29,31),

(viii) 2 =19, then y + 2z = 58, and there is no solution,

(ix) =23, then y + 2z = 54, and there is no solution,

(x) 2 > 23, then sum y+2 > 68 and there is no solution since z+y+z > 91.

C-T-2
An A4 sheet of paper is a rectangle with area % m? whose sides are in the
ratio 1 : v/2. One such A4 sheet is placed on another such that have a common

diagonal, but are not identical. Determine the area of the resulting octagon.

Solution. Let ABCDFEFGH be the octagon resulting from placing the rect-
angle ABEF on the rectangle ADEH. AF is the common diagonal of the rectan-
gles. The mid-point M of AFE is the common mid-point of the two rectangles. For
reasons of symmetry, AC'EG is a rhombus, and the area of the octagon is equal
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to the sum of the areas of the two rectangles, minus the area of the rhombus,
which is the overlap of the rectangles. The area of the rhombus is 4 times the area
of AACM. Since AM 1 CM and /DAFE = /C AM, the triangles AAC'M and
AADE are similar. If DE = a, we have AD = av/2, and therefore AE = a/3
and AM = “T‘/g : a\/2, the areas of the corresponding triangles fulfill the ratio

Aaacn + Aaapp = (—)2 (V2)?,

and we have

31 1 1 31 3
A = A .= D=2
BACM T BAADE 79 T 2716 4 2 256
It therefore follows that the area of the octagon equals
1 1 3 5
Auppr + Aappr —4- Anacn =+ —= —4- 5= =—m’

16 16 256 64

C-T-3
Prove that for each non-negative real number a the inequality

(@®+a®>—a—1*—(a®—a>—a+1)>0
is true. When does equality hold?
Solution. Observe that
(@®+a?—a—-1)2-(a®>—a®>—a+1)2=
=(@®+a®—a—-1-a*+a’+a—-1)*+a®>—-a—-1+a*—a’—a+1)=
= (2a* — 2)(2a® — 2a) = 4a(a® — 1)?,

and the latter expression is non—negative for all non—negative numbers.
Equality holds fora =0ora?> —1=0, i.e. a = 1.
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The competition presented in this paper was carried out for the ninth time this
year. Beside the original idea of a friendly competition and the obvious mathe-
matical benefits of such an activity for the students involved, the competition has
also come to help foster understanding between cultures that, though geograph-
ically close and historically connected, were practically inaccessible to another
until as recently as twenty years ago. The following paragraphs are intended to
present this competition to an international audience.

The original inspiration for this activity came from several international math-
ematics competitions that were already well established, such as the “Baltic Way”
or the Austrian-Polish Mathematics Competition. Due to the connections be-
tween Jaroslav Svréek and Jézef Kalinowski and the proximity of the Copernikus
Gymnézium in Bilovec (Czech Republic) and the Liceum Juliusz Slowacki in
Chorzéw (Poland), the idea of an international competition between students
of these two schools was born, and the first such competition was held in 1993
in Bilovec. The concept of extending the competition to another school was
first talked about at the WENMC conference in 1994 in Pravetz (namely with
Robert Geretschléger), and since 1997 BRG Keplerstrasse from Graz (Austria)
has also been taking part. The competition now takes place alternately in Bilovec,
Chorzéw and Graz.

The competition is divided into three categories. There is a junior division
(category C) for students in grade 8 (or younger), an intermediate division (cat-
egory B) for students in grades 9 or 10, and a senior division (category A) for
students in grade 11 or 12. Typically, four students from each school in each of
the divisions come together for a competition (making 36 students in total). The
students write an individual competition comprising 4 olympiad-style problems
to be solved in 120 minutes, and a team competition comprising three problems
to be solved in 90 minutes. These two competitions are completely independent
of one another, and yield separate results. While the individual competition
is written in supervised silence, the team competition sees one team from each
school (in different divisions, of course) placed together in a room with no adult
supervision. The students spend the 90 minutes attempting to formulate one
common group answer to each problem, and only one answer sheet per group is
accepted at the end.

The students were originally given the problems to solve in their own lan-
guage (Czech, Polish or German), but for ease of organization all now receive
the problems in English. They all write their answers in their own language,
however. While this makes for quite some interesting language mixes during the
social parts of the contest (with English often helping out as a common mini-
mal communication tool), the multitude of languages has not been a problem
for the contest itself. Specifically, the problems committee always finds ways to
communicate.

The competition is organized to run four days altogether. The first day is
a day of traveling. Since the train trip from Graz to Katowice (near Chorzéw)
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takes only about 8% hours and Ostrava (near Bilovec) is right on the direct line,
the trip is quite comfortable. The students have some time left to get used to
their new surroundings, and hopefully to start making new friends.

The second day is the day of the actual competition, with the evening typically
spent reading the papers, writing lists, and so on.

The results, though known to the committee, are kept secret from the com-
petitors through-out the third day, which is spent on a group excursion. This
year for instance, there was a bus trip to the famous salt mines of Wieliczka near
Krakéw.

Finally, the fourth day sees closing ceremonies including the handing out of
prizes and diplomas, after which the guest teams head for the train station and
home.
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