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MATHEMATICAL DUEL

PROBLEMS AND SOLUTIONS

(Chorz

�

ow { Mar
h 20, 2001)

A{I{1

Prove that the number

L = m

21

n

3

�m

7

n�m

3

n

21

+mn

7

is divisible by 42 for any integers m;n.

Solution. First we will prove that L is divisible by the prime 7. From

Fermat's theorem it follows that the 
ongruen
e a

7

� a (mod 7) is satis�ed for

any integer a. Thus

L � m

3

n

3

�mn�m

3

n

3

+mn = 0 (mod 7) :

Analogously the 
ongruen
e a

3

� a (mod 3), whi
h is true by Fermat's theo-

rem for any integer a and the prime 3, yields

L � mn�mn�mn +mn = 0 (mod 3) :

The proof of the divisibility L by the number 2 is obvious for reasons of parity.

Therefore the number L is divisible by the produ
t of the primes 2, 3 and 7

(2 � 3 � 7 = 42).

A{I{2

Find all fun
tions f : R ! R su
h that the equation

f(f(x+ y)) = f(x) + y

is satis�ed for arbitrary x; y 2 R .

Solution. We 
an 
hange x and y and obtain

f(f(y + x)) = f(y) + x for all x; y 2 R :

>From this fun
tional equation immediately follows

f(x) + y = f(y) + x for all x; y 2 R :

Taking y = 0 we get

f(x) = x + f(0) :
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For the left side of the given equation we get the expression

f(f(x+ y)) = f(x+ y + f(0)) = (x+ y + f(0)) + f(0) = x+ y + 2f(0)

and for its the right side it holds

f(x) + y = (x+ f(0)) + y = x + y + f(0) :

>From last two 
onditions we get f(0) = 0 and therofore f(x) = x for all x 2 R .

Further we see (after 
he
king) that the unique solution of the given equation is

the fun
tion f(x) = x for all x 2 R .

A{I{3

Constru
t a quadrilateral ins
ribed in the 
ir
le with the radius 3 
m with

two opposite sides of the lengths 2 
m and 4 
m and with maximum area.

Solution. For the lengths of sides of the 
y
li
 quadrilateral ABCD we 
an


onsider without loss of generality jABj = 4 
m and jCDj = 2 
m. From the

adjoining �gure we 
an see that the equalities

j

6

DACj = j

6

DBCj = ! and j

6

ACBj = j

6

ADBj = #

hold.

A

B

C

D

M

4




m

2




m

#

#

!

!

 

'

Figure 1

For the given lengths of the opposite sides AB and CD of the 
y
li
 quadri-

lateral ABCD, ' and  are 
onstant. Let M be the point of interse
tion of

the diagonals AC and BD. Be
ause ! and # are 
onstant j

6

AMBj = ! + # is


onstant too. We note j

6

BACj = ' and j

6

DBAj =  . For the lengths of the

diagonals AC and BD we have
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jACj = 2r sin(! + ') ; jBDj = 2r sin(! +  ) :

The area P of the 
y
li
 quadrilateral ABCD is given by the formula

P =

1

2

� jACj � jBDj � sin j

6

AMBj =

1

2

� 4r

2

� sin j

6

AMBj � sin(! + ') � sin(! +  ) :

Be
ause the produ
t

1

2

� 4r

2

� sin j

6

AMBj is 
onstant we will maximize

sin(! + ') � sin(! +  ) :

Therefore

sin(!+') = sin(!+ ) =

1

2

�


os('� )�
os('+ +2!)

�

�

1

2

�

1�
os('+ +2!)

�

:

The equality holds if and only if ' =  . This 
on
lusion is true in the 
ase when

ABCD is an isos
eles trapezium with bases AB and CD.

The 
onstru
tion of the quadrilateral ABCD is then evident.

Remark. Another solution 
an use the Brahmagupta's formula for the area of

a 
y
li
 quadrilateral.

A{I{4

Let a; b; 
 be the lengths of the sides of a triangle. Prove that the inequality

3a

2

+ 2b
 � 2ab+ 2a


is ful�lled.

Solution. We have

3a

2

+ 2b
 > 2ab + 2a


() 3a

2

+ 2b
� 2ab� 2a
 > 0

() a

2

� b

2

+ 2b
� 


2

+ a

2

� 2ab+ b

2

+ a

2

� 2a
+ 


2

> 0

() a

2

� (b� 
)

2

+ (a� b)

2

+ (a� 
)

2

> 0

() (a� b + 
)(a+ b� 
) + (a� b)

2

+ (a� 
)

2

> 0 .

The expressions (a� b)

2

and (a� 
)

2

are 
ertainly non-negative, and due to

the triangle inequality, we have

a+ 
 > b and a + b > 
 :

Therefore

(a� b + 
)(a+ b� 
) > 0

and the result follows.
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A{T{1

Prove that for arbitrary positive real numbers a; b; 
 the inequality

1

ab(a + b)

+

1

b
(b + 
)

+

1


a(
+ a)

�

9

2(a

3

+ b

3

+ 


3

)

is satis�ed. When does equality hold ?

Solution. We 
onsider the inequality

a

3

+ b

3

� ab(a + b) = a

2

b + ab

2

whi
h is true for arbitrary positive real numbers a; b. We rewrite this inequality

in the form

1

ab(a + b)

�

1

a

3

+ b

3

:

Similarly we have (for all positive real numbers a; b; 
)

1

b
(b + 
)

�

1

b

3

+ 


3

;

1


a(
 + a)

�

1




3

+ a

3

:

The sum of the last three inequalities yields

1

ab(a + b)

+

1

b
(b + 
)

+

1


a(
+ a)

�

1

a

3

+ b

3

+

1

b

3

+ 


3

+

1




3

+ a

3

:

Applying the arithmeti
-harmoni
 mean inequality for the right side of the last

inequality we get

1

3

�

1

a

3

+ b

3

+

1

b

3

+ 


3

+

1




3

+ a

3

�

�

3

(a

3

+ b

3

) + (b

3

+ 


3

) + (


3

+ a

3

)

:

After easy manipulation we obtain immediately

1

a

3

+ b

3

+

1

b

3

+ 


3

+

1




3

+ a

3

�

9

2(a

3

+ b

3

+ 


3

)

:

The equality holds if and only if a = b = 
.

A{T{2

Let ABC be a triangle. Equilateral triangles ABD;BCE and CAF are drawn

outside of ABC. Prove that the midpoints of these three triangles are the verti
es

of an equilateral triangle.
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Solution. Let ABD, BCE and CAF be the equilateral triangles whi
h are

drawn outside the given triangle ABC. It is easy to see that all their 
ir
um
ir
les

interse
t at a 
ommon point O (Fig. 2) for whi
h it holds

j

6

AOBj = j

6

BOCj = j

6

COAj = 120

Æ

:

Let X; Y; Z be the midpoints of the equilateral triangles BCE, CAF , ABD,

respe
tively. These points are the 
entres of 
ir
um
ir
les about the triangles

ABD, BCE and CAF too. Therefore the segment XY is perpendi
ular to 
hord

CO, Y Z is perpendi
ular to 
hord AO. Hen
e the angles XY Z and COA are

supplementary. Therefore it is j

6

XY Zj = 60

Æ

. Analogously we 
an prove that

j

6

Y ZXj = j

6

ZXY j = 60

Æ

. So the triangle XY Z is equiangular and hen
e

equilateral.

B

E

C

F

A

D

Z

XY

O

Figure 2

A{T{3

Is it possible for three di�erent positive integers x; y; z to exist between two

su

essive perfe
t squares, su
h that one is the geometri
 mean of the other two ?

In other words, is it possible that n

2

< a; b; 
 < (n + 1)

2

and 
 =

p

ab hold with

a, b, 
 all di�erent ? If so, give an example. If not, prove why this is not possible.

Solution. It is not possible. In order to see this, we assume without loss of

generality n

2

< a < b < (n + 1)

2

. We 
an write a = a

2

� r, where r does not


ontain any prime fa
tors twi
e, i.e. r is square-free. Sin
e ab = 


2

is a perfe
t

square, we must have b = b

2

� r. It therefore follows that
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n

2

< a < b < (n+ 1)

2

() n

2

< a

2

� 
 < b � r < (n + 1)

2

()

 

n

p

r

!

2

< a

2

< b

2

<

 

n+ 1

p

r

!

2

()

n

p

r

< a < b <

n + 1

p

r

=

n

p

r

+

1

p

r

�

n

p

r

+ 1 :

Sin
e r � 1, we have

1

p

r

� 1, and so a and b must be di�erent integers between

n

p

r

and

n

p

r

+ 1, whi
h 
ontradi
ts the fa
t that there 
an only be at most one

integer in this interval.

B{I{1

Determine all integers x su
h that

f(x) =

x

3

� 2x

2

� x + 6

x

2

� 3

is an integer.

Solution. Sin
e x

2

6= 3 for x 2 Z, we see that

x

3

� 3x

2

� x + 6

x

2

� 3

=

x

3

� 3x

2

� 3x+ 6

x

2

� 3

+

2x

x

2

� 3

=

=

x

3

� 3x

2

� x + 6

x

2

� 3

+

2x

x

2

� 3

= x� 2 +

2x

x

2

� 3

is an integer if and only if (x

2

�3)j2x. This 
an only be the 
ase if jx

2

�3j � j2xj

i.e. for x 2 f�3;�2;�1; 0; 1; 2; 3g. Che
king these numbers, we see that

f(�3) = �6; f(�2) = �8; f(�1) = �2; f(0) = �2; f(1) = �2;

f(2) = 4 and f(3) = 2

are indeed all integers, and the x for whi
h f(x) is an integer are the elements of

f�3;�2;�1; 0; 1; 2; 3g.

B{I{2

A 
onvex quadrilateral in the plane is given. Prove that the lines passing

through the midpoints of its opposite sides are perpendi
ular if and only if the

diagonals of the given quadrilateral are of the same length.
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Solution.

a) First let jACj = jBDj.

A B

C

D

K

L

M

N

Figure 3

From Fig. 3 we 
an see that KL and MN are 
ongruent segments whi
h

are parallel to the diagonal AC. Further we have

jKLj = jMN j =

1

2

jACj :

Similarly

jNKj = jLM j =

1

2

jBDj :

A

ording to jACj = jBDj we get

jKLj = jLM j = jMN j = jNKj :

Therefore the quadrilateral KLMN is either a square or a parallelogram

with sides of the same length. Its diagonals KM and LN are therefore

perpendi
ular.

b) Let KM ? LN .

The diagonals KM and LN of the (Varignon's) quadrilateral KLMN are

perpendi
ular in this 
ase. Be
ause KLMN is a 
ertainly parallelogram,

its diagonals are divided into two equal parts. This implies that the quadri-

lateral KLMN is either square or a parallelogram with all sides of the same

length. It follows that jACj = jBDj holds.

B{I{3

Four real numbers a; b; 
; d are given su
h that

b� a = 
� b = d� 
 :
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The sum of all these numbers is 2 and the sum of their 
ubes is

4

3

. Determine

the numbers.

Solution. Denote 2r = b� a = 
� b = d� 
 and m =

b+


2

. Then


 =

b + 


2

+


� b

2

= m+r; b =

b+ 


2

�


� b

2

= m�r d = m+3r; a = m�3r:

Sin
e

a + b+ 
+ d = 2 () (m� 3
) + (m� 
) + (m + 
) + (m+ 3
) = 2

() 4m = 2 () m =

1

2

and

(m�3
)

3

+(m�r)

3

+(m+r)

3

+(m+3r)

3

=

4

3

() 4m

3

+54m


2

+6m


2

=

4

3

() 4m

3

+60m


2

=

4

3

=)

1

2

+30


2

=

4

3

=) 


2

=

1

36

() 
 =

1

6

;

the numbers are

0 ;

1

3

;

2

3

; 1 :

B{I{4

Determine how many triples (a; b; 
) of positive integers satisfy the following

system of inequalities

a

2

a

2

+ 2b


+

b

2

b

2

+ 2
a

+




2




2

+ 2ab

� 1 ;

a

2

+ b

2

+ 


2

� 2001 :

Solution. Using the following well-known inequalities

a

2

+ b

2

� 2ab ; b

2

+ 


2

� 2b
 ; 


2

+ a

2

� 2
a ;

whi
h is true for any positive integers a; b; 
, we obtain

a

2

a

2

+ 2b


+

b

2

b

2

+ 2
a

+




2




2

+ 2ab

�

a

2

a

2

+ b

2

+ 


2

+

b

2

a

2

+ b

2

+ 


2

+




2

a

2

+ b

2

+ 


2

= 1 :

From the �rst inequality of the given system of inequalities it further follows that

a

2

a

2

+ 2b


+

b

2

b

2

+ 2
a

+




2




2

+ 2ab

= 1 :
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This equality implies a = b = 
. From the se
ond inequality of the given system

we therefore obtain the 
ondition 3a

2

� 2001, i.e. a

2

� 667. This inequality is

ful�lled for any integer a from the set f0; 1; : : : ; 25g.

The number of integer solutions of the given system of inequalities is 25. They

are all triples in the form (k; k; k), where

k 2 f1; 2; : : : ; 25g :

B{T{1

Solve the following system of equations

x

2

y + y

2

z = 254 ;

y

2

z + z

2

x = 264 ;

z

2

x+ x

2

y = 6

in real numbers.

Solution. Adding all these equations yields

2(x

2

y + y

2

z + z

2

x) = 524

or

(1) x

2

y + y

2

z + z

2

x = 262 :

Subtra
ting ea
h of the three original equations from (1) yields the equivalent

system of equations

(2) z

2

x = 8 ;

(3) x

2

y = �2 ;

(4) y

2

z = 256 :

Multiplying these three equations yields

(xyz)

3

= �4096

or

(5) xyz = �16 :

Dividing (2), (3) and (4) by (5) yields

z

y

= �

1

2

;

x

z

=

1

8

;

y

x

= 16;

and it therefore follows that

x

3

= z

2

x �

�

x

z

�

2

= 8 �

�

1

8

�

=

1

8

=) x =

1

2

;

y

3

= x

2

y �

�

y

x

�

2

= �2 � 16

2

= �512 =) y = �8 and
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z

3

= y

2

z �

�

z

y

�

2

= 256 �

�

�

1

2

�

2

= 64 =) z = 4 :

B{T{2

The square ABCD with sides of length 4 
m is given. Let K and L be

the midpoints of its sides BC and CD, respe
tively. Determine the area of the

quadrilateral whose sides lie on the lines AK, AC, BL and BD.

Solution.

A B

CD

K

L

M

N

S

X

Y

Z

U

Figure 4

A

ording to the 
entral symmetry with the 
entre in the point of interse
tion S of

the diagonals AC and BD of the given square ABCD we 
onsider the midpoints

M , N of the segments DA, AB, respe
tively. Let X; Y; Z; U be the points of

interse
tion of the lines AK with BL, BL with CM , CM with DN , DN with

AK, respe
tively (see Fig. 4). By rotation with 
entre S and angle 90

Æ

it is

easy to see that the points X, Y , Z and U are the verti
es of a square. Further,

we 
an 
ompute the area of the square XYZU whi
h is

16

5


m

2

. The area of the

quadrilateral whose sides lie on the lines AK, AC, BL and BD is therefore one

quarter of the area of the square XY ZU i.e.

4

5


m

2

.

B{T{3

The quadrati
 equation ax

2

+ bx+ 
 = 0 without real roots is given su
h that

a+ b + 
 < 0. Determine the sign of the 
oeÆ
ient 
.

Solution. Sin
e the equation ax

2

+ bx + 
 = 0 has no real roots, we have

b

2

� 4a
 < 0 and it follows that a
 >

b

2

4

.

Let us now prove that the produ
t of 
 and a+ b + 
 is positive:


(a+ b + 
) = a
+ b
 + 


2

>

b

2

4

+ b
+ 


2

=

 

b

2

+ 


!

2

� 0 :

Thus 
 < 0, be
ause 
(a+ b + 
) > 0 and a+ b + 
 < 0.
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C{I{1

Solve in integers the equation

7(mx+ 3) = 3(2mx + 9) ;

where m is a given integer. Consider all possibilities for m.

Solution. The given equation is equivalent to the equation

7mx + 21 = 6mx+ 27

or

mx = 6 :

For m 6= 0 we have x =

6

m

and m 2 f�6;�3;�2;�1; 1; 2; 3; 6g. For m = 0 the

above equation has no solution.

C{I{2

The re
tangle ABCD with sides of the lengths a; b (a > b) is given. Consider

the re
tangle ACEF su
h that the vertex D lies on the segment EF . The sides

CD, DA divide the re
tangle ACEF into three triangles whose areas are in the

ratio 1 : 2 : 3. Determine the ratio a : b.

Solution. The sides CD and DA of the re
tangle ABCD divide the re
tangle

ACEF into three similar right-angled triangles ACD, CDE, DAF (Fig. 5) with

the areas P

1

, P

2

, P

3

respe
tively, su
h that the ratio P

1

: P

2

: P

3

= 3 : 2 : 1 holds.

a

b

A B

CD

E

F

Figure 5

For the lengths of their hypotenuses AC, CD, DA we therefore have

jACj : jCDj : jDAj =

p

3 :

p

2 : 1

and so

a : b = jABj : jBCj = jCDj : jDAj =

p

2 : 1 :
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C{I{3

Determine all pairs (m;n) of positive integers su
h that the 
onditions

hm;ni = 125 and [m;n℄ = 10 000

are satis�ed; hm;ni and [m;n℄ denote greatest 
ommon divisor and least 
ommon

multiple of positive integers m, n, respe
tively.

Solution. Observe that hm;ni = 5

3

and [m;n℄ = 2

4

� 5

4

. Sin
e we have here

ex
lusively the powers of the numbers 2 and 5 and hm;ni = 5

3

, the following four


ases are only possible

(i) m = 5

3

� 5 ; n = 5

3

� 2

4

and solution (625,2000),

(ii) m = 5

3

� 2

4

; n = 5

3

� 5 and solution (2000,625),

(iii) m = 5

3

� 2

4

� 5 ; n = 5

3

and solution (10000,125),

(iv) m = 5

3

; n = 5

3

� 2

4

� 5 and solution (125,10000),

and there are no other solutions.

C{I{4

The right-angled triangle ABC with right angle at C is given. Let r be the

inradius of the triangle ABC. Prove that the equality

a + b = 
+ 2r

holds.

Solution. Let ABC be a right-angled triangle (see Fig. 6)

A

B

C

S

2

x

z

S

3

x y

S

1

y

z

r

r

r

Figure 6

If S stands for the 
enter of the 
ir
le ins
ribed in the triangle ABC and

S

1

; S

2

; S

3

denote the tangent points of the 
ir
le ins
ribed in the triangle with

the sides AB;BC;CA, respe
tively, then

jS

3

Aj = jAS

1

j = y ;

jS

1

Bj = jBS

2

j = z ;

12



jS

2

Cj = jCS

3

j = x :

Let us observe that CS

3

SS

2

is a square, so that x = r. Note that

a + b = z + x + x+ y = y + z + 2x = y + z + 2r ;


+ 2r = z + y + 2r ;

whi
h proves the required equalities.

C{T{1

Determine all triples (x; y; z) of prime numbers su
h that the 
onditions

x < y < z ; x + y + z = 77

hold.

Solution. The prime numbers less then 77 are 2, 3, 5, 7, 11, 13, 17, 19, 23,

29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73. Among them we will seeking the

solutions of the equation satisfying x < y < z.

Let us 
onsider the following possible 
ases

(i) x = 2, then y + z = 75 and there is no solution ,

(ii) x = 3, then y + z = 74, and we have the solutions(3; 7; 67), (3; 13; 61),

(3; 31; 43) ,

(iii) x = 5, then y+z = 72, and we have the solutions (5; 11; 61), (5; 13; 59),

(5; 19; 53), (5; 29; 43), (5; 31; 41) ,

(iv) x = 7, then y+z = 70, and we have the solutions (7; 11; 59), (7; 17; 53),

(7; 23; 47), (7; 29; 41) ,

(v) x = 11, then y + z = 66, and we have the solutions (11; 13; 53),

(11; 19; 47), (11; 23; 43), (11; 29; 37) ,

(vi) x = 13, then y + z = 64, and we have the solutions (13; 17; 47),

(13; 23; 41) ,

(vii) x = 17, then y + z = 60, and we have the solutions (17; 19; 41),

(17; 23; 37), (17; 29; 31) ,

(viii) x = 19, then y + z = 58, and there is no solution,

(ix) x = 23, then y + z = 54, and there is no solution,

(x) x > 23, then sum y+z > 68 and there is no solution sin
e x+y+z > 91 .

C{T{2

An A4 sheet of paper is a re
tangle with area

1

16

m

2

whose sides are in the

ratio 1 :

p

2. One su
h A4 sheet is pla
ed on another su
h that have a 
ommon

diagonal, but are not identi
al. Determine the area of the resulting o
tagon.

Solution. Let ABCDEFGH be the o
tagon resulting from pla
ing the re
t-

angle ABEF on the re
tangle ADEH. AE is the 
ommon diagonal of the re
tan-

gles. The mid-pointM of AE is the 
ommon mid-point of the two re
tangles. For

reasons of symmetry, ACEG is a rhombus, and the area of the o
tagon is equal
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to the sum of the areas of the two re
tangles, minus the area of the rhombus,

whi
h is the overlap of the re
tangles. The area of the rhombus is 4 times the area

of �ACM . Sin
e AM ? CM and

6

DAE =

6

CAM , the triangles �ACM and

�ADE are similar. If DE = a, we have AD = a

p

2, and therefore AE = a

p

3

and AM =

a

p

3

2

: a

p

2, the areas of the 
orresponding triangles ful�ll the ratio

A

�ACM

: A

�ADE

=

 

p

3

2

!

2

: (

p

2)

2

;

and we have

A

�ACM

= A

�ADE

�

3

4

�

1

2

=

1

2

�

1

16

�

3

4

�

1

2

=

3

256

:

It therefore follows that the area of the o
tagon equals

A

ABEF

+ A

ADEH

� 4 � A

�ACM

=

1

16

+

1

16

� 4 �

3

256

=

5

64

m

2

:

C{T{3

Prove that for ea
h non-negative real number a the inequality

(a

3

+ a

2

� a� 1)

2

� (a

3

� a

2

� a+ 1)

2

� 0

is true. When does equality hold?

Solution. Observe that

(a

3

+ a

2

� a� 1)

2

� (a

3

� a

2

� a+ 1)

2

=

= (a

3

+ a

2

� a� 1� a

3

+ a

2

+ a� 1)(a

3

+ a

2

� a� 1 + a

3

� a

2

� a+ 1) =

= (2a

2

� 2)(2a

3

� 2a) = 4a(a

2

� 1)

2

;

and the latter expression is non{negative for all non{negative numbers.

Equality holds for a = 0 or a

2

� 1 = 0, i.e. a = 1.
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The 
ompetition presented in this paper was 
arried out for the ninth time this

year. Beside the original idea of a friendly 
ompetition and the obvious mathe-

mati
al bene�ts of su
h an a
tivity for the students involved, the 
ompetition has

also 
ome to help foster understanding between 
ultures that, though geograph-

i
ally 
lose and histori
ally 
onne
ted, were pra
ti
ally ina

essible to another

until as re
ently as twenty years ago. The following paragraphs are intended to

present this 
ompetition to an international audien
e.

The original inspiration for this a
tivity 
ame from several international math-

emati
s 
ompetitions that were already well established, su
h as the \Balti
 Way"

or the Austrian-Polish Mathemati
s Competition. Due to the 
onne
tions be-

tween Jaroslav

�

Svr�
ek and J�ozef Kalinowski and the proximity of the Copernikus

Gymn�azium in B��love
 (Cze
h Republi
) and the Li
eum Juliusz S lowa
ki in

Chorz�ow (Poland), the idea of an international 
ompetition between students

of these two s
hools was born, and the �rst su
h 
ompetition was held in 1993

in B��love
. The 
on
ept of extending the 
ompetition to another s
hool was

�rst talked about at the WFNMC 
onferen
e in 1994 in Pravetz (namely with

Robert Gerets
hl�ager), and sin
e 1997 BRG Keplerstrasse from Graz (Austria)

has also been taking part. The 
ompetition now takes pla
e alternately in B��love
,

Chorz�ow and Graz.

The 
ompetition is divided into three 
ategories. There is a junior division

(
ategory C) for students in grade 8 (or younger), an intermediate division (
at-

egory B) for students in grades 9 or 10, and a senior division (
ategory A) for

students in grade 11 or 12. Typi
ally, four students from ea
h s
hool in ea
h of

the divisions 
ome together for a 
ompetition (making 36 students in total). The

students write an individual 
ompetition 
omprising 4 olympiad-style problems

to be solved in 120 minutes, and a team 
ompetition 
omprising three problems

to be solved in 90 minutes. These two 
ompetitions are 
ompletely independent

of one another, and yield separate results. While the individual 
ompetition

is written in supervised silen
e, the team 
ompetition sees one team from ea
h

s
hool (in di�erent divisions, of 
ourse) pla
ed together in a room with no adult

supervision. The students spend the 90 minutes attempting to formulate one


ommon group answer to ea
h problem, and only one answer sheet per group is

a

epted at the end.

The students were originally given the problems to solve in their own lan-

guage (Cze
h, Polish or German), but for ease of organization all now re
eive

the problems in English. They all write their answers in their own language,

however. While this makes for quite some interesting language mixes during the

so
ial parts of the 
ontest (with English often helping out as a 
ommon mini-

mal 
ommuni
ation tool), the multitude of languages has not been a problem

for the 
ontest itself. Spe
i�
ally, the problems 
ommittee always �nds ways to


ommuni
ate.

The 
ompetition is organized to run four days altogether. The �rst day is

a day of traveling. Sin
e the train trip from Graz to Katowi
e (near Chorz�ow)
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takes only about 8

1

2

hours and Ostrava (near B��love
) is right on the dire
t line,

the trip is quite 
omfortable. The students have some time left to get used to

their new surroundings, and hopefully to start making new friends.

The se
ond day is the day of the a
tual 
ompetition, with the evening typi
ally

spent reading the papers, writing lists, and so on.

The results, though known to the 
ommittee, are kept se
ret from the 
om-

petitors through-out the third day, whi
h is spent on a group ex
ursion. This

year for instan
e, there was a bus trip to the famous salt mines of Wieli
zka near

Krak�ow.

Finally, the fourth day sees 
losing 
eremonies in
luding the handing out of

prizes and diplomas, after whi
h the guest teams head for the train station and

home.
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