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Preface

The 18th International Mathematical Duel was held on March
9th–12th, 2010 in Chorzów. Five school-teams from Austria, Czech
Republic, Poland and Romania took part in this traditional mathe-
matical competition, namely from BRG Kepler Graz, GMK Bílovec,
GJŠ Přerov, I LO Chorzów and for the first time one team from CNC
Ploieşti (Romania) as guests.

As usual the competition was provided in the three categories
(A—contestants of the last two years, B—contestants of the 5th and
6th years, and C—contestants of the 3rd and 4th years of eight-year
grammar school). Twelve contestants (more precisely 4 in any cate-
gory) of any school took part in this competition, i.e. 60 contestants
in total.

This booklet contains all problems with solutions and results of
the 18th International Mathematical Duel from the year 2010.

Authors
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Problems



Category A (Individual Competition)

A–I–1
Determine all triples of mutually distinct real numbers a, b, c such
that the cubic equation

x3 + abx2 + bcx + ca = 0

with unknown x has three real roots a, b, c.

A–I–2
We are given bases |AB| = 23 and |CD| = 5 of a trapezoid ABCD with
diagonals |AC| = 25 and |BD| = 17. Determine the lengths of its sides
BC and AD.

A–I–3
We are given a circle c1 and points X and Y on c1. Let XY be a
diameter of a second circle c2. We choose a point P on the greater
arc XY on c1 and a point Q on c2 such that the quadrilateral PXQY
is convex and PX ‖ QY. Prove that a measure of the angle PYQ is
independent of the choice of P (if an appropriate Q exists).

A–I–4
Solve in real numbers the following system of equations√√

x + 2 = y − 2,√√
y + 2 = x − 2.
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Category A (Team Competition)

A–T–1
We are given two real numbers x and y (x ≠ y) such that x4 + 5x3 = y
and y3 +5x2 = 1 hold. Prove that the equality x3 +x2y+xy2 = −1 holds.

A–T–2
Let us consider a unit square ABCD. On its sides BC and CD de-
termine points E and F, respectively, such that |BE| = |DF| and the
triangles ABE and AEF have the same perimeter.

A–T–3
Determine all pairs (m, n) of integers such that the equation

4n = 1899 + m3

is fulfilled.
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Category B (Individual Competition)

B–I–1
How many positive integers divisible by 29 in the form abcabcabc
exist?

B–I–2
Determine all pairs (a, b) of positive integers such that the equation

4a = b2 + 7

is fulfilled.

B–I–3
We are given two line segments AB and CD in the plane. Find all
points V in this plane such that the triangles ABV and CDV have
the same area.

B–I–4
Determine all polynomials P(x) with real coefficients and all real
number q such that the equation

2x P(x − 2) − P(x2) = 3x2
− 22x + q

holds for all real numbers x.
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Category B (Team Competition)

B–T–1
Let us consider a triangle ABC with altitudes ha = 24 and hb = 32.
Prove that for the third its altitude hc the following inequalities

13 < hc < 96

are fulfilled.

B–T–2
A square piece of paper ABCD is folded such that the corner A comes
to lie on the midpoint M of the side BC. The resulting crease inter-
sects AB in X and CD in Y. Show that |AX | = 5 |DY |.

B–T–3
Prove that the number 20102011 − 2010 is divisible by 20102 + 2011.
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Category C (Individual Competition)

C–I–1
Prove that the sum of the squares of eight consecutive odd positive
integers is divisible by the number 8.

C–I–2
We are given a rectangle ABCD. Arbitrary triangles ABX and CDY
are erected by its sides AB and CD. We define the mid-points P of
AX, Q of BX, R of CY and S of DY. Prove that the line segments PR
and QS have a common mid-point.

C–I–3
Let us consider a trapezoid KLMN with sides of lengths 3, 3, 3, k with
positive integer k. Determine the maximum area of such a trapezoid.

C–I–4
Prove that each positive integer n ≥ 6 can be written as a sum of two
positive integers, one of which is prime and the second of which is
a composite number.
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Category C (Team Competition)

C–T–1
Determine the number of all pairs (x, y) of decimal digits such that
the positive integer in the form xyx is divisible by 3 and the positive
integer in the form yxy is divisible by 4.

C–T–2
We are given a cube ABCDEFGH (see picture) with edges of the
length 5 cm. Determine the lengths of all altitudes of the triangle
EDC.

A B

CD

E F

GH

C–T–3
The sum of all digits of a three-digit prime p1 is a two-digit prime
p2. The sum of the digits of p2 is a one-digit prime p3 > 2. Find all
triples (p1, p2, p3) of such primes.
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Solutions



Category A (Individual Competition)

A–I–1
Using Vièta’s formulas we must determine the real numbers a, b, c
such that the equations

a + b + c = −ab, ab + bc + ca = bc and abc = −ca

hold. After easy rewriting of these equations we have

a(b + 1) + (b + c) = 0, a(b + c) = 0 and ac(b + 1) = 0.

If a = 0, then b + c = 0 and we obtain the solution in the form
(a, b, c) = (0, b, −b) with an arbitrary real b.

If a ≠ 0, then both b + c = 0 and b + 1 = 0 must be fulfilled.
This implies b = −1 and c = 1. Thus we obtain the further solution
(a, b, c) = (a, −1, 1) with arbitrary real a ≠ 0.

Conclusion. All solutions of the given problem are triples of mu-
tually distinct real numbers (a, b, c) in the form (0, −b, b) with b ≠ 0
or in the form (a, −1, 1) with a ≠ −1, a ≠ 0 and a ≠ 1.

A–I–2
Let E be the point on the line AB such that DB ‖ CE. We can cal-
culate the area P of the triangle AEC from Heron’s formula in the
following way

P =
√

p(p − a)(p − b)(p − c),

where a, b, c are lengths of sides of the triangle and

p =
a + b + c

2
.

Then a = |AE| = 28, b = |AC| = 25, c = |CE| = 17. Further we have
p = 1

2 (28 + 25 + 17) = 35 and p − a = 7, p − b = 10, p − c = 18.

P =
√

35 ⋅ 7 ⋅ 10 ⋅ 18 =
√

5 ⋅ 7 ⋅ 7 ⋅ 2 ⋅ 5 ⋅ 18 = 7 ⋅ 5 ⋅ 6 = 210.

We also have
P =

1
2

⋅ |AE| ⋅ h =
1
2

⋅ 28 ⋅ h = 14h,
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where h is the altitude of the triangle AEC (i.e. the trapezoid ABCD).
Thus 14h = 210 holds, and therefore h = 15.

A B

CD

EFG

h

h

a) Let us consider the triangle ABC with the altitude |CF| = 15.
From the Pythagorean theorem in the triangle AFC we obtain

|AF| =
√

|AC|2 − |CF|2 =
√

625 − 225 =
√

400 = 20.

Then |FB| = |AB| − |AF| = 23 − 20 = 3. From the Pythagorean theorem
in triangle GBD

|CB| =
√

|CF|2 + |FB|2 =
√

152 + 32 =
√

225 + 9 =
√

234.

b) Let us now consider the triangle ABD with the altitude |DG| =
15. From the Pythagorean theorem in the triangle AFC we further
obtain

|BG| =
√

|BD|2 − |DG|2 =
√

289 − 225 =
√

64 = 8.

Then |AG| = |AB| − |GB| = 23 − 8 = 15. From the Pythagorean theorem
in the triangle AGD we finally obtain

|AD| =
√

|DG|2 + |AG|2 =
√

152 + 152 =
√

2 ⋅ 152 = 15 ⋅
√

2.

Another solution. Let H denote the intersection point of the seg-
ments AC and BD and ω the angle AHB (see the figure). The lines
AB and CD are parallel, and it follows that the triangles AHB and
CHD are similar with coefficient |AB| : |CD| = 23 : 5. This yields

|AH| = 25⋅
23
28

, |BH| = 17⋅
23
28

, |CH| = 25⋅
5
28

, and |DH| = 17⋅
5
28

.
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We can compute by the law of cosine in the triangle AHB

cos ω =
|AH|2 + |BH|2 − |AB|2

2 |AH| ⋅ |BH|
=

13
85

.

A B

CD

ω
H

For the supplementary angles to ω, we have

cos 6 AHD = cos 6 BHC = cos(180◦ − ω) = − cos ω = −
13
85

.

Now we can use the law of cosines in the triangle BHC

|BC|
2 = |BH|

2 + |CH|
2

− 2 |BH| ⋅ |CH| cos 6 BHC = 234 = 32
⋅ 26

and in the triangle AHD

|AD|
2 = |AH|

2 + |DH|
2

− 2 |AH| ⋅ |DH| cos 6 AHD = 450 = 152
⋅ 2.

We therefore have |BC| = 3
√

26 and |AD| = 15
√

2.

A–I–3
As we can see in the figure, 6 XQY = 90◦ since XY is a diameter of c2
and Q lies on c2.

X

Y

P
Q

c1
c2
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Considering the convex quadrilateral PXQY, we are given that
PX and QY are parallel, making PXQY a trapezoid. Since 6 XQY =
90◦, we therefore also have 6 PXQ = 90◦, and therefore 6 XPY +
6 PYQ = 180◦. Since the angle α = 6 XPY is independent of the
choice of P on the greater arc XY of c1, the angle 6 PYQ = 180◦ − α is
therefore also independent of the choice of P, as claimed.

A–I–4
Since

√√
x + 2 ≥

√
2 we get an estimate y ≥ 2 +

√
2 and similarly

x ≥ 2 +
√

2. After squaring both given equations we obtain
√

x + 2 = (y − 2)2,
√

y + 2 = (x − 2)2,

After subtraction of the last two equations we obtain
√

x −
√y =

(y − x)(x + y − 4) which (after some manipulation) gives

(
√

x −
√

y)
(
1 + (
√

x +
√

y)(x + y − 4)
)

= 0.

The second bracket on the left side of the previous equation is always
nonzero and similarly (with regards to estimates in the beginning of
the solution) in the case of the third bracket.

Therefore it follows x = y = t2 with t ≥

√
2 +
√

2, and thus t > 1.
We obtain only one condition for t:

t + 2 = (t2
− 2)2, i.e. t4

− 4t2
− t + 2 = (t − 2)(t3 + 2t2

− 1) = 0.

Since t3 + 2t2 − 1 > 1 + 2 − 1 = 2 holds for each t > 1, the last algebraic
equation (of the 4th degree) has only one root t > 1, namely t = 2 and
thus x = y = 4.

Conclusion. The given system of equation has only one solution
(x, y) = (4; 4) in real numbers.

Remark. The proof of the equality x = y (x ≥ 2, y ≥ 2) can also be
shown in the following way: If x > y, then

√
x + 2 = (y − 2)2

< (x − 2)2 =
√

y + 2, i.e. x < y,

which is a contradiction with x > y (and similarly in the case x < y).
Thus x = y necessarily holds.
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Category A (Team Competition)

A–T–1
Multilpying y3+5x2 = 1 by x yields xy3+5x3 = x. Taking the difference
of this and the first equation x4 + 5x3 = y yields

x(x3
− y3) = y − x,

and dividing this equation by x − y yields

x(x2 + xy + y2) = −1 which is equvalent to x3 + x2y + xy2 = −1,

as claimed.

A–T–2
Let |BE| = |DF| = x, and thus |CE| = |CF| = 1 − x. Using conditions
from the given problem we can see that the equation

1 + x +
√

1 + x2 = 2
√

1 + x2 +
√

2(1 − x)2

must be true. After double squaring of this equation and further
rewriting we get the following equation:

x4 + 2x3
− 7x2 + 2x + 1 = 0,

i.e.

0 = (x4 + 2x3 + 3x2 + 2x + 1) − 10x2 = (x2 + x + 1)2
− 10x2.

After factorization of the left side of the last equation we see that
there exists exactly one root x of this equation for 0 < x < 1.

A

B C

D

E

F

x 1− x

x

1− x

1
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Conclusion. The solution of the given problem is

x =
1
2

(√
10 − 1 −

√
7 − 2

√
10
)

.

A–T–3
It is easy to check that n ≥ 0. From

4n
≡ 1 (mod 9) for n ≡ 0 (mod 3),

4n
≡ 4 (mod 9) for n ≡ 1 (mod 3),

4n
≡ 7 (mod 9) for n ≡ 2 (mod 3),

1899 = 32 ⋅ 211 (211 is a prime) and

m3
≡ 0, 1, 8 (mod 9) for m ≡ 0, 1, 2 (mod 3)

we see n = 3k and m = 3l + 1, where k, l are integers, k ≥ 0. We can
rewrite the solved equation to the form

1899 = 43k
− m3 =

(
4k

− m
)(

42k + m ⋅ 4k + m2
)

.

The expression 42k + m ⋅ 4k + m2 = (4k + 1
2 m)2 + 3

4 m2 takes only
positive values, so 4k − m > 0. Moreover 4k − m ≡ 1 − 1 ≡ 0 (mod 3)
and 42k + m ⋅ 4k + m2 ≡ 1 + 1 + 1 ≡ 0 (mod 3). Therefore we have to
solve two systems of equations

4k
− m = 3,

42k + m ⋅ 4k + m2 = 633

and
4k

− m = 633,

42k + m ⋅ 4k + m2 = 3.

It is easy to check that the second one has no solution. Substitut-
ing 4k = 3 + m in the second equation of the first system we obtain
a quadratic equation 3(m2 + 3m + 3) = 633 with roots −16, 13. The
equation 4k = 3 + m has an integer solution only for m = 13, and this
solution is k = 2, so n = 6.

The proposed problem has the unique solution m = 13 and n = 6.
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Category B (Individual Competition)

B–I–1
We write the number abcabcabc in the form

abcabcabc = abc ⋅ 1001001.

Because 29 is not divisor of 1001001, it follows that 29  abc.
The least three digit number divisible by 29 is 4 ⋅ 29 = 116, the

greatest one is 34 ⋅ 29 = 986. So 31 numbers satisfy all premises.

B–I–2
Rewriting the left side of the given equation by the way 4a − b2 =
(2a)2 − b2 we have

(2a)2
− b2 = (2a

− b)(2a + b) = 7.

Since 2a + b is a positive integer and 2a − b is an integer, it must be
2a − b = 1 and 2a + b = 7. From the first equation we have b = 2a − 1.
Substituting b in the given equation we get

4a
− (2a

− 1)2 = 7, i.e. 2a+1 = 8.

This yields a = 2 and b = 3.

Conclusion. The unique (positive integer) solution of the given
equation is the pair (a, b) = (2; 3).

B–I–3
We will consider three possibilities.

a) The points A, B, C, D lie on the same line `. Further we will
consider two possibilities:

• If |AB| = |CD|, then each point of the plane (excepting `)
solves our problem.

• If |AB| ≠ |CD|, then there exists no solution.
b) The line AB is parallel with CD (both lines have no common

point). We then also have two possibilities.
• If |AB| = |CD|, then V is each point of the mid-parallel a of

the two parallel lines AB and CD.
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• If |AB| ≠ |CD|, then V is each of points of two parallel lines a1
and a2 with AB and CD such that d(AB, ai) ⋅ |AB| = d(CD, ai) ⋅

|CD|, i = 1, 2, (see Fig. 1).

A B

C D

a1

a2
Fig. 1

c) The line AB intersects the line CD at the point P. Since the
triangles ABV and CDV have the same area, it holds necessary

d(AB, V) ⋅ |AB| = d(CD, V) ⋅ |CD|,

i.e. d(CD, V) : d(AB, V) = |AD| : |CD| = const. It means all points
V lie on a line. It is easy to see that V lies either on the line l1 or
on the line l2 (without the point P). Nevertheless (for construc-
tion of l1 and l2), it holds |AB| = |PB′| = |PB′′| and |CD| = |PD′|
(see Fig. 2).

A B

C

D

B′B′′

D′ X ′X ′′

P

l1l2

Fig. 2
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B–I–4
We rewrite the given equation as

P(x2) + 3x2
− 22x + q = 2x P(x − 2)

and consider possible degrees of the polynomial P(x). If deg P(x) = 0
holds, the left side of the equation is of degree 2 and the right side
of degree 1, which is impossible. If deg P(x) = n ≥ 2 holds, the left
side is of degree 2n and the right side of degree n + 1, which is not
possible, since we certainly have 2n > n + 1. It therefore follows
that deg P(x) = 1 must hold for any polynomial P(x) fulfilling the
requirements of the problem.

We can therefore write P(x) = ax + b, and substituting this ex-
pression yields

ax2 + b + 3x2
− 22x + q = 2x (a(x − 2) + b),

which is equivalent to

(3 − a)x2 + (b + q) = (−4a + 2b + 22)x.

We therefore have 3 − a = 0 ⇔ a = 3, −4a + 2b + 22 = 0 ⇔ b = −5
and b + q = 0 ⇔ q = 5. It follows that the only possible polynomial
fulfilling the given conditions is P(x) = 3x − 5, and this is only a
solution for q = 5.

Category B (Team Competition)

B–T–1
For the area S of a triangle ABC we have

S =
1
2

⋅ a ⋅ ha =
1
2

⋅ b ⋅ hb =
1
2

⋅ c ⋅ hc.

It follows

a =
2S
ha

=
2S
24

, b =
2S
hb

=
2S
32

and c =
2S
hc

.
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From the triangle inequalities |a − b| < c < a + b we obtain

2S
24

−
2S
32

<
2S
hc

<
2S
24

+
2S
32

,

and dividing both sides by 2S

1
24

−
1
32

<
1
hc

<
1

24
+

1
32

,

1
96

<
1
hc

<
7

96
.

It follows
96 > hc >

96
7

= 13 +
5
7

> 13,

which was to be shown.

B–T–2
As shown in the figure, let N be the point of intersection of AM
and the crease line XY. Furthermore, let the lengths of the sides
of ABCD be equal to 1.

A

B C

D

X

Y

M

I

N

Since |BM| = 1
2 , we have |AM| = 1

2

√
5, and therefore |AN| =

1
2 |AM| = 1

4

√
5. The right-angled triangles ABM and AXN share the

angle in A, and are therefore similar, and we have |AX | : |AN| =
|AM| : |AB| ⇔ |AX | :

(
1
4

√
5
)

= 1
2

√
5 : 1, and therefore |AX | = 5

8 .
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If I is an orthogonal projection of Y on AB, the triangles YIX and
ABM are congruent, since their sides are pairwise orthogonal, and
|AB| = |YI| = 1 holds. We therefore have |IX | = |BM| = 1

2 , and there-
fore |DY | = |AX | − |IX | = 5

8 −
1
2 = 1

8 , and we see that |AX | = 5 |DY | holds
as claimed.

B–T–3
We first note that

x2010
− 1 = (x3

− 1)(x2007 + x2004 + . . . + 1) and x3
− 1 = (x − 1)(x2 + x + 1)

both hold. We therefore have

(x2 + x + 1)  (x3
− 1) and (x3

− 1)  (x2010
− 1),

and therefore also
(x2 + x + 1)  (x2010

− 1).

Setting x = 2010 therefore yields

(20102 + 2010 + 1)  (20102010
− 1),

and multiplying by 2010 therefore yields

(20102 + 2011)  (20102011
− 2010)

as claimed.

Category C (Individual Competition)

C–I–1
We can write any eight consecutive odd positive integers in the form:
2k − 7, 2k − 5, 2k − 3, 2k − 1, 2k + 1, 2k + 3, 2k + 5, 2k + 7 with a positive
integer k (k ≥ 4). The sum of the squares of these eight integers is
therefore

(2k − 7)2 + (2k − 5)2 + (2k − 3)2 + (2k − 1)2+
+ (2k + 1)2 + (2k + 3)2 + (2k + 5)2 + (2k + 7)2 =

= 32k2 + 168 = 8(4k2 + 21),

which proves the claim.
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C–I–2
The figure shows the situation as described in the problem.

A

B C

D

X

Y
P

Q

R

S

M

Since P and Q are the midpoints of AX and BX respectively, the
line segment PQ results from the line segment AB by homothety
with center X and factor 1

2 . It follows that the line segment PQ is
parallel to AB and half as long as AB. By the same reasoning on the
other side of the rectangle, the line segment RS is parallel to CD and
half as long. Since AB and CD are opposite sides of a rectangle, they
are parallel and equally long. This therefore also holds for PQ and
RS. We see that PQRS must be a parallelogram, and it therefore
follows that the diagonals PR and QS of this parallelogram have a
common midpoint.

C–I–3
For such a trapezoid to exist, the inequalities 1 ≤ k ≤ 8 must be
fulfilled. Let Pk denote the area of the trapezoid for side length k.
We wrote that the length of an altitude of trapezoids for k = 2 and
k = 4 are the same. Then P2 < P4. Similarly the length of an altitude
of trapezoids for k = 1 and k = 5 are the same. Then P1 < P5.

A B

CD

hk

1
2 (k − 3)

1
2 (k − 3)

3

3

3
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Now, we will compute areas Pk of the trapezoids for k = 3, 4,
5, 6, 7, 8.

For 3 ≤ k ≤ 8 we have |AE| = |FB| = 1
2 (k − 3). Then for the lengths

of their altitudes hk we have

hk =
√

BD2 − FB2 =

√
9 −

(k − 3)2

4

and the area

Pk =
k + 3

2
⋅

√
9 −

(k − 3)2

4
.

For k = 3 the trapezoid is the square and

P3 =
√

81 =
√

1296
4

.

For k = 4 we have

P4 =
√

1715
4

.

For k = 5 we have

P5 =
√

128 =
√

2048
4

.

For k = 6 we have

P6 =
√

2187
4

.

For k = 7 we have

P7 =
√

125 =
√

2000
4

.

For k = 8 we have

P8 =
√

1331
4

.

The maximal area of considered trapezoids is therefore for k = 6.
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C–I–4
If n is an even positive integer, we can write such n ≥ 6 as the sum
2 + (n − 2), in which the first summand is the prime and the second
one is an even positive integer (n − 2 ≥ 4), i.e. n − 2 is a composite
number.

Similarly, for each odd positive integer n ≥ 7 we can write n as
the sum 3 + (n − 3), in which the first summand is the prime and
second one (n − 3 ≥ 4) is an even, so a composite, number.

This concludes the proof.

Category C (Team Competition)

C–T–1
We can use criteria of divisibility by positive integers 3 and 4. Each
positive integer in the form yxy is divisible by 4 if and only if the
number xy is divisible by 4 and simultaneously y ≠ 0. Hence

xy ∈ {12, 16, 24, 28, 32, 36, 44, 48, 52, 56, 64, 68, 72, 76, 84, 88, 92, 96}.

A positive integer in the form xyx is divisible by 3 if and only if the
sum of its digits is divisible by 3, i.e. the sum 2x+y must be divisible
by 3. After checking all possible pairs of positive integers we obtain
only six possibilities:

xy ∈ {28, 36, 44, 52, 88, 96}.

Conclusion. Solutions of the given problem are the following
pairs if positive integers (2; 8), (3; 6), (4; 4), (5, 2), (8; 8), (9; 6), i.e. we
have in total 6 solutions.

27



C–T–2
Since |CD| = 1, |DE| =

√
2 and |EC| =

√
3, the triangle EDC is right-

angled (by the reverse Pythagorean theorem). Therefore two of its
altitudes are congruent with legs, i.e. 1 and

√
2. We can calculate

the last altitude d (from vertex D to the hypotenuse EC using double
counting of the area S of the right-angled triangle EDC. We have

S =
1
2

⋅ 1 ⋅
√

2 =
1
2

⋅
√

3 ⋅ d, and thus d =
√

6
3

.

Conclusion. The triangle EDC has altitudes of lengths 1,
√

2
and 1

3

√
6.

C–T–3
The sum of the digits of each three-digit number is at most 3 ⋅ 9 = 27.
Among all two-digit positive integers which are not greater than 27
there exist only five two-digit primes (11, 13, 17, 19, 23). The sums of
the digits of these five two-digit primes are 2, 4, 8, 10, 5, respectively.
Among them there exists exactly one, which is a prime greater than
2. We have therefore p3 = 5 and p2 = 23.

After checking of all decompositions of the number p2 = 23 into
three summands which are decimal digits we obtain four solutions
for which p1 is also a prime. There are the three-digit numbers
599, 797, 887 and 977.

Conclusion. There exist four triples (p1, p2, p3) of primes satisfy-
ing the conditions of the given problem:

(p1, p2, p3) ∈ {(559, 23, 5); (797, 23, 5); (887, 23, 5); (977, 23, 5)}.
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Results



Category A (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Simona Domesová GMK Bílovec 5 8 8 7 28
2. Bianca-Ioana Voicu CNC Ploieşti 3 8 8 7 26
3. Wojciech Lis I LO Chorzów 8 8 8 0 24
4. Martin Broušek GJŠ Přerov 6 8 8 1 23

Martin Unger BRG Kepler Graz 0 8 8 7 23
6. Andreea-Elena Cârciumaru CNC Ploieşti 4 8 8 2 22
7. Josef Malík GMK Bílovec 0 8 8 5 21
8. Michał Chyra I LO Chorzów 6 0 8 6 20
9. Petr Boroš GMK Bílovec 0 3 8 8 19

10. Valentin Borzan BRG Kepler Graz 0 8 8 1 17
11. Bartosz Badura I LO Chorzów 8 0 8 0 16

Jakub Solovský GMK Bílovec 4 0 8 4 16
13. Karel Kraus GJŠ Přerov 0 0 8 6 14
14. Andrei-Răzvan Mareşu CNC Ploieşti 0 8 1 4 13
15. Krzysztof Paprotny I LO Chorzów 0 8 1 2 11

Golo Wimmer BRG Kepler Graz 0 2 8 1 11
17. Stephan Meighen-Berger BRG Kepler Graz 1 7 0 2 10

Vojtěch Miloš GJŠ Přerov 0 0 6 4 10
19. Lukáš Langer GJŠ Přerov 0 0 8 1 9
20. Miriam-Elena Şerban CNC Ploieşti 1 1 2 0 4
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Category B (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Tomasz Cieśla III LO Chorzów 8 8 8 8 32
Radu-Ştefan Voroneanu CNC Ploieşti 8 8 8 8 32

3. Bernd Prach BRG Kepler Graz 8 6 4 6 24
4. V.-P. Veigang-Rădulescu CNC Ploieşti 8 8 1 1 18
5. Theodor-Daniel Nedelcu CNC Ploieşti 8 8 1 0 17
6. Pavel Trutman GMK Bílovec 5 8 1 0 14
7. Constantin Albu CNC Ploieşti 4 8 1 0 13
8. Clemens Andritsch BRG Kepler Graz 4 7 1 0 12
9. Manuel Gruber BRG Kepler Graz 8 2 0 0 10

10. Barbora Mólová GMK Bílovec 0 8 0 1 9
11. Šimon Rozsíval GJŠ Přerov 0 7 1 0 8

Maciej Wojsyk I LO Chorzów 0 0 2 6 8
13. Tomasz Depta I LO Chorzów 4 2 1 0 7

Eva Gocníková GJŠ Přerov 0 5 0 2 7
15. Florian Krach BRG Kepler Graz 3 1 2 0 6
16. Elizabeth Brázdilová GMK Bílovec 0 1 3 0 4

Kateřina Solovská GMK Bílovec 2 2 0 0 4
18. Alena Harlenderová GJŠ Přerov 0 0 2 0 2

Anna Kula I LO Chorzów 1 1 0 0 2
Klára Švarcová GJŠ Přerov 1 1 0 0 2
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Category C (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Kinga Turlej I LO Chorzów 8 8 6 8 30
2. Andrei Matei CNC Ploieşti 8 8 5 8 29
3. Diana-Maria Cremarenco CNC Ploieşti 8 7 8 5 28
4. Łukasz Ławniczak I LO Chorzów 8 8 2 8 26
5. Heinz Prach BRG Kepler Graz 8 8 0 8 24

Roxana-Mihaela Săvulescu CNC Ploieşti 8 8 0 8 24
7. Magdalena Marcinowicz I LO Chorzów 2 8 6 1 17
8. Jarosław Socha I LO Chorzów 8 0 0 8 16
9. Pavel Berger GMK Bílovec 2 6 0 7 15

10. Jan Krejčí GMK Bílovec 8 0 0 6 14
Bogdan-Constantin Ioniţă CNC Ploieşti 6 8 0 0 14

12. Martin Sládeček GJŠ Přerov 1 7 0 0 8
Michaela Jandeková GMK Bílovec 2 6 0 0 8
Martin Rychtárik GMK Bílovec 0 0 0 8 8

15. Benjamin von Berg BRG Kepler Graz 0 7 0 0 7
16. Matěj Tomešek GJŠ Přerov 1 1 4 0 6
17. Zuzana Gocníková GJŠ Přerov 1 0 0 3 4
18. Felix Feistritzer BRG Kepler Graz 1 0 0 0 1

Sarah Fruhmann BRG Kepler Graz 0 1 0 0 1
Tomáš Kremel GJŠ Přerov 1 0 0 0 1
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Category A (Team Competition)

Rank School 1 2 3 ∑

1. CNC Ploieşti 8 8 1 17
2. I LO Chorzów 8 8 0 16
3. GMK Bílovec 8 7 0 15
4. BRG Kepler Graz 0 8 1 9

GJŠ Přerov 0 8 1 9

Category B (Team Competition)

Rank School 1 2 3 ∑

1. CNC Ploieşti 8 8 8 24
2. I LO Chorzów 7 8 8 23
3. GJŠ Přerov 8 8 0 16
4. BRG Kepler Graz 7 5 0 12
5. GMK Bílovec 0 1 0 1

Category C (Team Competition)

Rank School 1 2 3 ∑

1. GMK Bílovec 8 8 8 24
I LO Chorzów 8 8 8 24

3. CNC Ploieşti 8 8 7 23
4. BRG Kepler Graz 8 3 7 18
5. GJŠ Přerov 2 7 1 10
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