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Creation of this booklet is co-funded by the European Social Fund
and national budget of the Czech Republic in the framework of the
project No. CZ.1.07/2.3.00/09.0017 “MATES—Support of systematic
work with high school students in the area of mathematics".
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Preface

The 19th International Mathematical Duel was held from 22–
25 March 2011 in Přerov. In this year the competition was organized
by Jakub Škoda Gymnasium Přerov in cooperation with Faculty of
Science of Palacký University Olomouc.

Five school-teams from Austria, Czech Republic, Poland and
Italy took part in this traditional mathematical competition, namely
from Bundesrealgymnasium Kepler, Graz, Gymnázium M. Koper-
níka, Bílovec, I Liceum Ogólnokształcące im. J. Słowackiego, Cho-
rzów, Gymnázium J. Škody, Přerov and for the first time one team
from Liceo Scientifico Statale A. Labriola, Roma-Ostia (Italy) as
guests.

As usual the competition was provided in the three categories
(A – contestants of the last two years, B – contestants of the 5th and
6th years, and C – contestants of the 3rd and 4th years of eight-year
grammar school). Twelve contestants (more precisely 4 in any cate-
gory) of any school took part in this competition, i.e. 60 contestants
in total.

This booklet contains all problems with solutions and results
of the 19th International Mathematical Duel from the year 2011.

Authors
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Problems



Category A (Individual Competition)

A–I–1
Solve in the domain of real numbers the following system of equa-
tions

x4 + 1 = 2yz,

y4 + 1 = 2zx,

z4 + 1 = 2xy.

Jaroslav Švrček

A–I–2
We are given a trapezoid ABCD with AB ‖ CD and |AB| = 2 |CD|. Let
M be the common point of the diagonals AC and BD and E the mid-
point of AD. Lines EM and CD intersect in P. Prove that |CP| = |CD|

holds.

Robert Geretschläger

A–I–3
Let a, b, p, q and p

√
a + q

√
b be positive rational numbers. Prove

that numbers
√

a and
√

b are also rational.

Jacek Uryga

A–I–4
We are given an acute-angled triangle ABC. Let us consider a tri-
angle KLM with vertices in the feet of the altitudes of the given
triangle. Prove that the orthocenter of triangle ABC is equal to the
incenter of triangle KLM.

Józef Kalinowski
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Category A (Team Competition)

A–T–1
Determine all polynomials f (x) = x2 + px + q with integer coefficients
p, q such that f (x) is a perfect square for infinitely many integers x.

Jacek Uryga

A–T–2
Let c be a circle with center O and radius r and ` a line containing O.
Further let P and Q be points on c symmetric with respect to `. X is
a point on c such that OX ⊥ ` and A, B are points of intersection of
XP with `, XQ with ` respectively. Prove that |OA| ⋅ |OB| = r2 holds.

Robert Geretschläger

A–T–3
Peter throws two dice together and then always writes the number
of all showing dots on the blackboard. Find the least number k with
the following property: After k throws Peter can always choose some
of the written numbers, such that their product has remainder 1
after division by 13.

Pavel Calábek
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Category B (Individual Competition)

B–I–1
Let A be a six-digit positive integer which is formed by using two
digits x, y only. Further let B be a six-digit positive integer resulting
from A if all digits x are replaced by y and simultaneously all digits
y are replaced by x. Prove that the sum A + B is divisible by 91.

Józef Kalinowski

B–I–2
An isosceles right-angled triangle EBC with right angle at C and
|BC| = 2 is given in the plane. Determine all possible areas of trape-
zoids ABCD (AB ‖ CD) in which E is the mid-point of AD.

Jaroslav Švrček

B–I–3
Prove that there exist infinitely many solutions of the equation

2x + 2x+3 = y2

in the domain of positive integers.

Jaroslav Švrček

B–I–4
We are given a common external tangent line t to circles c1(O1; r1)
and c2(O2; r2) which have no common point and lie in the same half-
plane defined by t. Let d be the distance between the tangent points
of circles c1 and c2 with the line t. Determine the smallest possible
length of a broken line AXB (i.e. the union of line segments AX and
XB), such that A belongs to c1, B belongs to c2 and X lies on t.

Jaroslav Švrček
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Category B (Team Competition)

B–T–1
Solve in the domain of positive integers the following equation

2
x2 +

3
xy

+
4
y2 = 1.

Józef Kalinowski

B–T–2
Let E be the mid-point of the side CD of the convex quadrilateral
ABCD in the plane. Prove the following statement: If the area of the
triangle AEB is half of the area of ABCD, then ABCD is a trapezoid.

Jacek Uryga

B–T–3
Determine all real solutions of the following system of equations

2a − 2b = 29 + 4ab,
2c − 2b = 11 + 4bc,
2c + 2a = 9 − 4ca.

Robert Geretschläger
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Category C (Individual Competition)

C–I–1
The number n has the following properties:

a) the product of all its digits is odd,
b) the sum of the squares of its digits is even.

Prove that the number of digits in n cannot be equal to 2011.

Robert Geretschläger

C–I–2
Let ABC be a right-angled triangle with hypotenuse AB. Determine
measures of its angles at A and B if the angle bisector at B divides
the opposite side AC at a point D such that |AD| : |CD| = 2 : 1.

Jaroslav Švrček

C–I–3
Determine the number of all ten-digit numbers which are divisible
by 4 and which are written using only the digits 1 and 2.

Józef Kalinowski

C–I–4
Let p, q be two parallel lines in the plane and A a point lying outside
of the strip bounded by the lines p and q. Construct a square ABCD
such that its vertices B, D lie on p and q, respectively.

Pavel Calábek
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Category C (Team Competition)

C–T–1
Determine all pairs (x, y) of positive integers satisfying the following
equation

(x + y)2 = 109 + xy.

Józef Kalinowski

C–T–2
An isosceles triangle ABC with the base |AB| =

√
128 is given in the

plane. The foot of its altitude from A divides the side BC into two
parts in the ratio 1 : 3 of their lengths. Determine the perimeter and
area of this triangle.

Józef Kalinowski

C–T–3
Find all positive integers n such that the number n3 − n is divisible
by 48.

Jaroslav Švrček

11





Solutions



Category A (Individual Competition)

A–I–1
For any real a, the inequality 2a2 ≤ a4 + 1 holds. We therefore ob-
tain the following estimates for left-hand sides of all equations of the
given system:

2x2
≤ x4 + 1 = 2yz,

2y2
≤ y4 + 1 = 2zx,

2z2
≤ z4 + 1 = 2xy.

Adding up all three inequalities (and dividing by 2) we have

x2 + y2 + z2
≤ xy + yz + zx. (1)

On the other hand we know, that the inequality

x2 + y2 + z2
≥ xy + yz + zx (2)

is true. This follows immediately from the evident inequality

(x − y)2 + (y − z)2 + (z − x)2
≥ 0. (3)

Therefore from (1) and (2) we have x2 +y2 +z2 = xy+yz+zx. From the
inequality (3) we can see that equality holds if and only if x = y = z.
Thus we will solve the following biquadratic equation x4 + 1 = 2x2.
It is easy to see that this equation has only two real roots, namely 1
and −1.
Conclusion. After checking (which is a part of this solution) we can
see that the given system of equations has only two real solutions:
(x, y, z) = (1, 1, 1) and (x, y, z) = (−1, −1, −1).

Remark. We can use another way to prove x = y = z. Multiplying the
subsequent equations by x, y and z, respectively we obtain

x5 + x = 2xyz,

y5 + y = 2xyz,

z5 + z = 2xyz.

Therefore x5 + x = y5 + y = z5 + z. Since the function f (t) = t5 + t is in-
creasing in the whole domain (as a sum of two increasing functions),
the previous equality holds if and only if x = y = z.
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A–I–2
Let S be the mid-point of the diagonal BD. Further let Q be a point
of intersection of the line AS with CD. Q is therefore a vertex of
a paralelogram ABQD (see picture). Since |AB| = 2 |CD|, the mid-
point of the side DQ is C. From the similarity of the triangles ABM
and CDM we further obtain

|BM| : |DM| = |AB| : |CD| = 2 : 1

and also
|BM| : |DM| = |DM| : |MS| = 2 : 1.

Thus, the point M of intersection of diagonals AC and BD of the given
trapezoid ABCD must simultaneously be a centroid of the triangle
AQD. Its median EQ is therefore collinear with EM. Thus Q = P,
and the proof is finished.

A B

CD

M
S

P = Q

E
−→b

−→a

Another solution. Let
−→
DC =

−→
a and

−→
AD =

−→
b . We then have

−→
AE = 1

2
−→
b

and
−−→
AM = 2

3 (
−→
a +
−→
b ), since triangles MAB and MCD are similar with

ratio 2 : 1. We therefore have
−−→
EM = 2

3
−→
a + 1

6
−→
b .

The vector
−→
DP can now be written in two ways, and we have

−
1
2
−→
b + λ

(
2
3
−→
a +

1
6
−→
b
)

= µ
−→
a ,

and comparing coefficients therefore yields λ = 3, and thus µ = 2.
We see that DP is twice as long as DC, as claimed.
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A–I–3
Let us observe that p

√
a + q

√
b > 0 and

p2a − q2b = (p
√

a + q
√

b)(p
√

a − q
√

b).

Hence

p
√

a − q
√

b =
p2a − q2b

p
√

a + q
√

b
.

Since both the numerator and the denominator of the fraction
are rational, so is the number p

√
a − q

√
b.

The rationality of
√

a and
√

b results now from the following two
equalities:

√
a =

(p
√

a + q
√

b) + (p
√

a − q
√

b)
2p

,

√
b =

(p
√

a + q
√

b) − (p
√

a − q
√

b)
2q

and the rationality of the numbers p, q, p
√

a + q
√

b and p
√

a − q
√

b.

A–I–4
Let D, E, F be the feet of the altitudes from vertices A, B, C of the
given acute-angled triangle ABC and V be its orthocenter. First of
all, we can see that

| 6 CAD| = | 6 CBE| = 90◦ − | 6 BCA|.

Since VF ⊥ AB the quadrilaterals AFVE and BFVD are cyclic and
therefore

|6 EFV | = | 6 EAV | = | 6 CAD| = | 6 CBE| = |6 DBV | = |6 DFV |.

Cyclically we can also prove that

|6 FDV | = |6 EDV | and | 6 DEV | = |6 FEV |,
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A B

C

D

E

F

V

which completes the proof.

Category A (Team Competition)

A–T–1
Let f (x) be a perfect square for an integer x. Let us denote m such
an integer that x2 + px + q = m2. We can rewrite this equation in the
following way

(2x − 2m + p)(2x + 2m + p) = p2
− 4q.

If p2 − 4q ≠ 0 then there exist only a finite number of integer factor-
izations of p2 − 4q, so there exist only a finite number of the integer
solutions x and m of the equation above.

On the other hand, if p2 − 4q = 0, then p is even. For x = m −
1
2 p

(m is an arbitrary integer) follows

f (x) = (m −
1
2 p)2 + p (m −

1
2 p) + q = m2

−
1
4 (p2

− 4q) = m2,

so f (x) is a perfect square.

Conclusion. f (x) is the perfect square for infinitely many integers x
if and only if p is even and q = 1

4 p2.
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Another solution. If the polynomial f (x) satisfies the assumption,
then the polynomial

g(x) = 4f (x) = 4x2 + 4px + 4q = (2x + p)2 + 4q − p2

is also a perfect square for the same set of x as the polynomial f (x).
For further investigations we need the proposition that for every

integer a > 0 the interval (a2 − a, a2 + a) contains exactly one perfect
square, namely a2.

To prove the proposition we note the following: for every non-
negative b ≠ a we have b ≥ a + 1 or 0 ≤ b ≤ a − 1.

If b ≥ a + 1, then b2 ≥ a2 + 2a + 1 > a2 + a and if 0 ≤ b ≤ a − 1, then
b2 ≤ a2 − 2a + 1 < a2 − a.

In both cases we see that b2 6∈ (a2 − a, a2 + a), which proves the
proposition.

Now, choose x such that |2x + p| > |4q − p2| and

g(x) = (2x + p)2 + 4q − p2

is a perfect square (we can do this, because there are infinitely many
x for which g(x) is a perfect square).

It is easy to see that the interval

(|2x+p|
2

−|2x+p|, |2x+p|
2 + |2x+p|) = ((2x+p)2

−|2x+p|, (2x+p)2 + |2x+p|)

contains the square (2x + p)2 + 4q − p2. Thus by the proposition

(2x + p)2 + 4q − p2 is equal to (2x + p)2 and 4q − p2 = 0.

Consequently we have

q = 1
4 p2 and f (x) = x2 + px + 1

4 p2 = (x + 1
2 p)2.

This polynomial is a perfect square for infinitely many integers if
and only if the coefficient p is even.
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A–T–2
We name Y = PQ ∩ ` and |PY | = |QY | = x. Since PQ⊥`, the triangles
AXO and APY are similar and we have

|OA|

|OA| − |OY |
=

r
x

⇒ x ⋅ |OA| = r ⋅ |OA| − r ⋅ |OY | ⇒ |OA| =
r ⋅ |OY |

r − x
.

AO B Y

X

P

Q

r
x

`

Similarly, since the triangles BXO and BQY are similar, we have

|OB|

|OY | − |OB|
=

r
x

⇒ x ⋅ |OB| = r ⋅ |OY | −r ⋅ |OB| ⇒ |OB| =
r ⋅ |OY |

r + x
.

It therefore follows that

|OA| ⋅ |OB| =
r2 ⋅ |OY |2

(r − x)(r + x)
=

r2(r2 − x2)
r2 − x2 = r2,

as claimed.

Another solution. Let Y be the reflection of X with respect to the
line AO. Then the segment XY is diameter of the circle and so the
angle XYP is right. The points X, Q are symmetric to Y, P with

19



AO
B

Y

X

P

Q

r

r

`

respect to `, so the point B lies on the segment YP. Now, observe that
the triangles XAO, XYP and YBO are right-angled and the pairs of
triangles XAO and XYP, XYP and YBO have a common acute angle.
Thus we conclude that the all the mentioned triangles are similar.

By this similarity we have in particular

|AO|

|XO|
=

|YO|

|BO|
,

which proves the the required statement.

A–T–3
After each throw Peter writes on the blackboard some number from
the set {2, 3, 4, . . . , 12}. If after every throw he writes a number 2
then the remainders of the product of the all 2’s on the blackboard
after division of 13 in n throws are in the following table:

n 1 2 3 4 5 6 7 8 9 10 11 12
2n (mod 13) 2 4 8 3 6 12 11 9 5 10 7 1

In this case Peter needs at least 12 throws. We will show that
12 throws are sufficient.

Let ai be the number which Peter writes on the blackboard af-
ter the i-th throw. Let us denote s1 = a1, s2 = a1a2, s3 = a1a2a3,
. . . , s12 = a1a2. . . a12. Since none of the numbers ai is divisible by
13 then the remainders of si after division by 13 are from the set
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{1, 2, 3, . . . , 12}. If there exists an index i such that the remainder of
si after division by 13 is 1, then the proof is finished. On the other
hand 12 numbers s1, s2, . . . , s12 have remainders (after division by
13) in the set {2, 3, 4, . . . , 12} having 11 elements. Using the Pigeon-
hole Principle there exist two indices i, j (1 ≤ i < j ≤ 12) such the
numbers si and sj have the same remainder after division by 13. In
that case the difference sj − si is divisible by 13. But

sj−si = a1a2. . . aj−a1a2. . . ai = a1a2. . . ai(ai+1. . . aj−1) = si(ai+1. . . aj−1).

Since si isn’t divisible by 13 then ai+1. . . aj has remainder 1 after
division by 13. It is easy to see that the product ai+1. . . aj has at least
two factors since none of ai has remainder 1.

Conclusion. The least possible number k of such throws is 12.

Category B (Individual Competition)

B–I–1
Let A = c5c4c3c2c1c0 and B = d5d4d3d2d1d0, where ci, di ∈ {x, y},
ci ≠ di for i = 0, 1, 2, 3, 4, 5 and x, y ∈ {1, . . . , 9} be non-zero distinct
decimal digits.

Since ci + di = x + y ≠ 0 for i = 0, 1, 2, 3, 4, 5 we can count the sum

A + B = c5 ⋅ 105 + c4 ⋅ 104 + c3 ⋅ 103 + c2 ⋅ 102 + c1 ⋅ 101 + c0 ⋅ 100

+ d5 ⋅ 105 + d4 ⋅ 104 + d3 ⋅ 103 + d2 ⋅ 102 + d1 ⋅ 101 + d0 ⋅ 100

= (x + y) ⋅ (105 + 104 + 103 + 102 + 10 + 1) = (x + y) ⋅ 111111
= (x + y) ⋅ 91 ⋅ 1221.

Thus the number A + B is divisible by 91.
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B–I–2
Let F be a mid-point of the side BC of the trapezoid ABCD. Let us
consider the right-angled triangle EFC. Using Pythagoras theorem

A B

CD

E F

2 1

1

v

we obtain the length of its hypotenuse EF. We obtain |EF| =
√

5.
Using double counting of the twice the area of this triangle we obtain

√
5 ⋅ v = |EF| ⋅ v = |EC| ⋅ |FC| = 2 ⋅ 1 = 2.

From this equation it follows

v =
2
√

5
5

,

where v is the altitude from the vertex C in the triangle EFC (see
the picture). The area P of the trapezoid ABCD is therefore

P = |EF| ⋅ 2v =
√

5 ⋅ 2
2
√

5
5

= 4.

Conclusion. All considered trapezoids ABCD have the area 4.

B–I–3
We can rewrite the given equation in the following way

2x + 2x+3 = 2x(1 + 23) = 2x
⋅ 32 = y2.

If x is an even positive integer, i.e. x = 2n (n is a positive integer), we
can see that each pair (x, y) of positive integers in the form (2n, 2n ⋅ 3)
is for arbitrary positive integer n a solution of the given equation.

Thus the proof is finished.
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B–I–4
We will use a symmetry with respect to the line t. Let us consider
a circle c′2 with center O′2 which is a reflection of the circle c2 in the
considered symmetry. The points A and X of a broken line AXB are
given as points of intersection of segment O1O′2 with the circle k1
and the line t, respectively. A point B id obtained as an image of a

O1

O2

O′2

A
B

B′

L

X

d

r2

r1

c1

c2

c′2

t

point of intersection B′ of the segment O1O′2 with the circle c′2 in this
reflection. Thus we get a point B which lies on the circle c2. With
respect to the construction, the broken line AXB has the smallest
possible length.

To determine of its length we can use Pythagoras’ theorem in
the right-angled triangle O1LO′2. The point L lies on a line perpen-
dicular to t going through the center O1 in the opposite half-plane
as the point O1 in a distance r2 from t. Thus, for the lengths of its
legs we have |O1L| = r1 + r2 and |LO′2| = d. It is easy to see, that the
smallest length ` of the broken line AXB is

` = |AB′| =
√

(r1 + r2)2 + d2 − (r1 + r2).
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Category B (Team Competition)

B–T–1
We note that the inequalities x ≥ 2 and y ≥ 3 hold, because 2

x2 < 1
and 4

y2 < 1.
For y = 3, we obtain the equation

2
x2 +

1
x

=
5
9

.

From the above we obtain the equation 5x2 − 9x − 18 = 0, which
yields x1 = −

6
5 , which is not positive integer and x2 = 3. We have one

solution x = y = 3.
We prove that this equation do not other positive integer solu-

tions.
For y = 4, we obtain the equation

2
x2 +

3
4x

+
1
4

= 1,

which can be written in the form 3x2 − 3x − 8 = 0 with a discriminant
∆ = 105 and thus this equation has no solution in positive integers.

For y ≥ 5, from earlier consideration recall that x ≥ 2 holds, and
the equation has no solution in positive integers, because

2
x2 ≤

1
2

=
50

100
,

3
xy

≤
3

10
=

30
100

,
4
y2 ≤

4
25

=
16

100
,

and therefore
2
x2 +

3
xy

+
4
y2 <

96
100

.

The equation has a unique solution in positive integers, namely
x = y = 3.

Another solution. Since x ≥ 2 and y ≥ 3, then 2
x2 < 1 and 4

y2 < 1.
Further, since

2
32 +

3
3 ⋅ 3

+
4
32 =

2
9

+
3
9

+
4
9

= 1,
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a solution of the given equation in positive integers is x = y = 3.
Assume that there exist some other solution of the equation.

Then the first of the unknowns must be smaller and the second one
greater than 3 to obtain the sum of fractions equal to 1.

From the inequality y ≥ 3 the y cannot be smaller than 3. There-
fore only x can be smaller, and from inequality x ≥ 2 only x = 2.

For x = 2, we have the equation

2
22 +

3
2y

+
4
y2 = 1.

We can rewrite this equation in the form y2 − 3y − 8 = 0 with dis-
criminant ∆ = 41. So, there are no positive integer solutions in this
case.

It follows that the equation does not have another positive inte-
ger solution.

The equation therefore has the unique solution in positive inte-
gers x = y = 3.

B–T–2
Let A′ be a reflection of A with respect to the point E.

A

B
C

D

E

A′

It is easy to see that the triangles AED and A′EC are congruent
(by the side-angle-side rule). By the assumption, areas of resultant
triangles must fulfill the equality

SBCE + SA′CE = SBCE + SADE = SABE = 1
2 SABCD.

(ST denotes the area of a polygon T.)
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On the other hand, the areas of the triangles AEB and A′EB
are equal (both triangles have equal bases AE, A′E and the common
altitude). Thus we have

SA′EB = SBCE + SA′CE,

which is true if and only if C lies on the segment A′B. This means
that |6 DAE| = |6 EA′B| and hence the sides BC and AD are parallel.

B–T–3
The given system of equations is equivalent to

4ab − 2a + 2b = −29,
4bc + 2b − 2c = −11,
4ca + 2c + 2a = 9

or
(2a + 1)(2b − 1) = −30,
(2b − 1)(2c + 1) = −12,
(2c + 1)(2a + 1) = 10.

Substituting 2a + 1 = x, 2b − 1 = y and 2c + 1 = z, this is equaivalent
to

xy = −30,
yz = −12,
zx = 10.

Multiplying these equations yields (xyz)2 = 602, and therefore xyz =
±60. If xyz = 60, division yields x = −5, y = 6 and z = −2, which is
equivalent to a = −3, b = 7

2 and c = −
3
2 . If xyz = −60, we similarly

obtain x = 5, y = −6 and z = 2 or a = 2, b = −
5
2 and c = 1

2 . These
two tripels are therefore the only solutions of the given system of
equations.
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Category C (Individual Competition)

C–I–1
Since the product of the digits is odd, each of the digits must be odd,
and its square is odd in each case. If k is the number of digits in n,
it follows that the sum of the squares of the digits of n has the same
parity as k, so k is even. This is in contradiction with k = 2011.

C–I–2
Let S denote the mid-point of the hypotenuse AB (see picture). Then
the triangles ASD, BSD and BCD have the same area, which is equal

A B

C

D

S

to 1
3 of the area of the right-angled triangle ABC (the line segment

DS is the median in the triangle ABD and areas of the triangles ABD
and BCD are in the ratio 2 : 1 using conditions of the given problem).
Therefore altitudes from vertices S and C in the triangles BSD and
BCD are equal (these triangles have the common side BD). Since
angles at B in both considered triangles are equal, the triangles BSD
and BCD are also congruent. Thus |BS| = |BC| and |AB| : |BC| = 2 : 1.

Conclusion. This yields, that measures of angles at A and B in the
right-angled triangle ABC are 30◦ and 60◦, respectively.

C–I–3
Since a considered ten-digit number n is divisible by 4, the last two
digits of this number can be 12 (in this order) only. For each of eight
other position of this number (in decimal system) we have always
two possibilies (digit 1 or digit 2), i.e. together 28 ⋅1 = 28 possibilities.
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Conclusion. There exist 28 = 256 ten-digit numbers with the given
property.

C–I–4
Let us assume, that line p is between A and q. Otherwise we can
exchange B and D.

Let r be perpendicular to p going through A and let P and Q be
points of intersection of r with p and q respectively. Let ABCD be
considered square (see the picture).

A

B

C

D

P

Q

B′ p

q

It is easy to see that the triangles ABP and DAQ are congruent
right-angled triangles (they have congruent angles and congruent
hypotenuses).

This implies a construction. We draw the perpendicular from
the point A to p and q and find its feet P and Q. A point B is on the
line p in distance |AQ| from the point P and a point D is on the line
q in distance |AP| from the point Q in the opposite half-plane to the
half-plane AQB.

The problem has two solutions which are symmetrical to the
line r.

Remark. Another solution is based on a rotation. Point D is the
image of the point B in rotation around the point A for the angle
90◦. So the point D is the intersection point of the line q and the line
p′ which is image of the p in rotation of p around A by 90◦. Since we
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can rotate clockwise or counter-clockwise, there are two such points
D, and we can easily construct the square ABCD from its side AD.

Category C (Team Competition)

C–T–1
We first note that the given equation (x + y)2 = 109 + xy is equivalent
to x2 + xy + y2 = 109. Assuming without loss of generality that x ≤ y
holds, we see that 3x2 ≤ x2 + xy + y2 = 109 must hold, and therefore
x2 ≤

109
3 < 37. Since x is a positive integer, x can only be equal to

1, 2, 3, 4, 5 or 6. For x = 1, 2, 3, 4 and 6, the equation x2 + xy + y2 = 109
reduces to y2 + y − 108 = 0, y2 + 2y − 105 = 0, y2 + 3y − 100 = 0,
y2 + 4y − 93 = 0 and y2 + 6y − 73 = 0, respectively, none of which has
integer solutions. Only for x = 5 do we obtain y2 + 5y − 89 = 0 ⇐⇒
(y + 12)(y − 7) = 0, which yields the solution (5, 7).

Since the equation is symmetric, we obtain the set of all solu-
tions as {(5, 7), (7, 5)}.

C–T–2
We have two possibilities for a locus of the point D (see two pictures
below).

In the case of the left figure we obtain by double-counting of the
length y from the Pythagoras’ formula for the right-angled triangles
ABF and AFC

128 − (3x)2 = y2 = (4x)2
− x2.

From this we obtain 24x2 = 128, and thus x = 4
√

3
3 . Then y2 = 15x2 =

15 ⋅
16
3 = 80, and y = 4

√
5. For the area S1 of this triangle

S1 =
1
2

⋅ 4x ⋅ y = 2xy = 2 ⋅
4
√

3
3

⋅ 4
√

5 =
32
3
√

15

holds. For the perimeter P1 we have

P1 = 8x +
√

128 = 8 ⋅
4
√

3
3

+ 8
√

2 = 8 ⋅

(
4
√

3
3

+
√

2

)
.
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In the case of the right figure we obtain by double-counting of
the length y from the Pythagoras’ formula applied to the triangles
ABF and AFC

(4x)2
− (3x)2 = y2 = 128 − x2.

We therefore have 8x2 = 128, and thus x = 4. Then y2 = 7x2 = 7 ⋅ 16,
and y = 4

√
7. For the area S2 of this triangle

S2 =
1
2

⋅ 4x ⋅ y = 2xy = 2 ⋅ 4 ⋅ 4
√

7 = 32
√

7

holds. For the perimeter P2 we have

P2 = 8x +
√

128 = 8 ⋅ 4 + 8
√

2 = 8 ⋅

(
4 +
√

2
)

.

C–T–3
Rewriting n3 − n = (n − 1)n(n + 1) we can see that each of the con-
sidered numbers is a product of three consecutive non-negative inte-
gers. Since 48 = 24 ⋅3 we need to find all positive integers n such that
(n − 1)n(n + 1) is divisible by two coprime numbers 24 and 3. Since
one of each three consecutive integers is always divisible by 3, we
must find all positive integers n, such that (n − 1)n(n + 1) is divisible
by 24 = 16. We have two possibilities for the parity of n:
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. n is even. Then n − 1 and n + 1 are odd and therefore n must be
in the form n = 16k (k is a positive integer).

. n is odd. Then n − 1 and n + 1 are even. Thus n − 1 or n + 1 must
be divisible by 8 (both of these numbers can’t be simultaneously
divisible by 4), i.e. n = 8p + 1 or n = 8q − 1 (p, q are positive
integers).

Conclusion. The requested numbers n are in the form n = 16k or
n = 8p + 1 or n = 8q − 1, in which k, p, q are positive integers.
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Results



Category A (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Jakub Solovský GMK Bílovec 8 8 8 8 32
Martin Unger BRG Kepler Graz 8 8 8 8 32
Tomasz Cieśla I LO Chorzów 8 8 8 8 32

4. Karel Beneš GJŠ Přerov 1 8 8 0 17
5. Pavel Francírek GJŠ Přerov 0 2 3 8 13
6. Josef Malík GMK Bílovec 1 8 0 0 9

Eva Gocníková GJŠ Přerov 1 0 0 8 9
8. Fabio De Rubeis LSS Labriola Roma 0 0 0 8 8
9. Pavel Trutman GMK Bílovec 3 0 0 0 3

10. Jakub Jaroš GMK Bílovec 1 0 0 0 1
Andreas Weiss BRG Kepler Graz 1 0 0 0 1
Marton Liziczai BRG Kepler Graz 1 0 0 0 1
Artur Koziarz I LO Chorzów 0 1 0 0 1
Tomasz Depta I LO Chorzów 1 0 0 0 1
Marek Raclavský GJŠ Přerov 1 0 0 0 1
Federico Parisi LSS Labriola Roma 1 0 0 0 1
Matteo Almanza LSS Labriola Roma 1 0 0 0 1

18. Aleksandra Orłowska I LO Chorzów 0 0 0 0 0
Renato Catello LSS Labriola Roma 0 0 0 0 0

34



Category B (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Lukáš Chmela GJŠ Přerov 8 8 8 8 32
2. Jarosław Socha I LO Chorzów 8 8 8 1 25
3. Václav Kapsia GMK Bílovec 8 8 8 0 24

Łukasz Ławniczak I LO Chorzów 8 8 8 0 24
5. Clemens Andritsch BRG Kepler Graz 8 5 8 1 22
6. Adam Spyra I LO Chorzów 8 8 5 0 21
7. Jan Krejčí GMK Bílovec 8 4 8 0 20
8. Bernd Prach BRG Kepler Graz 8 2 8 0 18
9. Heinz Prach BRG Kepler Graz 8 1 8 0 17

10. Kateřina Solovská GMK Bílovec 8 0 8 0 16
Matteo Budoni LSS Labriola Roma 1 7 8 0 16

12. Ivana Pumprlová GJŠ Přerov 7 8 0 0 15
13. Michal Šrůtek GMK Bílovec 8 0 6 0 14
14. Marianna Bastianelli LSS Labriola Roma 1 0 8 0 9
15. Dominik Nop GJŠ Přerov 8 0 0 0 8

Michele Tobia LSS Labriola Roma 0 8 0 0 8
17. Felix Feistritzer BRG Kepler Graz 6 0 0 0 6

Dario Mostarda LSS Labriola Roma 6 0 0 0 6
19. Zuzana Gocníková GJŠ Přerov 1 0 0 0 1
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Category C (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Igor Lechowski I LO Chorzów 8 8 8 2 26
2. Daniele Cappuccio LSS Labriola Roma 8 2 8 2 20
3. Anna Skipirzepa I LO Chorzów 8 0 8 0 16

Sebastian Borówka I LO Chorzów 8 0 8 0 16
Tomáš Kremel GJŠ Přerov 8 0 8 0 16
Agostina Calabrese LSS Labriola Roma 8 0 8 0 16

7. Jan Gocník GJŠ Přerov 7 0 8 0 15
8. Jan Dzian GMK Bílovec 4 0 8 2 14

Tomasz Kasprzak I LO Chorzów 6 0 8 0 14
Marco Carrozza LSS Labriola Roma 8 0 6 0 14

11. Tereza Tížková GMK Bílovec 7 0 6 0 13
12. Marian Poljak GJŠ Přerov 4 0 8 0 12
13. Šimon Čáp GMK Bílovec 8 1 2 0 11

Gerda Prach BRG Kepler Graz 3 0 8 0 11
15. Benedikt Andritsch BRG Kepler Graz 8 0 2 0 10
16. Martina De Pretis LSS Labriola Roma 2 2 2 0 6
17. Doris Prach BRG Kepler Graz 0 0 2 0 2
18. Vojtěch Dorňák GMK Bílovec 0 0 1 0 1
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Category A (Team Competition)

Rank School 1 2 3 ∑

1. I LO Chorzów 7 8 8 23
2. BRG Kepler Graz 2 8 8 18
3. GMK Bílovec 2 8 2 12
4. LSS Labriola Roma 2 8 1 11
5. GJŠ Přerov 2 7 1 10

Category B (Team Competition)

Rank School 1 2 3 ∑

1. BRG Kepler Graz 8 7 2 17
2. LSS Labriola Roma 1 0 4 5
3. I LO Chorzów 2 2 0 4
4. GMK Bílovec 0 2 0 2
5. GJŠ Přerov 1 0 0 1

Category C (Team Competition)

Rank School 1 2 3 ∑

1. I LO Chorzów 2 4 1 7
2. GMK Bílovec 2 0 1 3
2. BRG Kepler Graz 2 0 1 3
4. LSS Labriola Roma 2 0 0 2
5. GJŠ Přerov 1 0 0 1
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