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Preface

The 21st International Mathematical Duel was held from 10–13
March 2013 in Graz. In this year the competition was organized by
Bundesrealgymnasium Kepler in Graz.

Five school-teams from Austria, Czech Republic and Poland
took part in this traditional mathematical competition, namely from
Bundesrealgymnasium Kepler, Graz, Gymnázium M. Koperníka,
Bílovec, I Liceum Ogólnokształcące im. J. Słowackiego, Chorzów,
Gymnázium J. Škody, Přerov, as well as guest team called All-Stars
Graz, made up of students from three schools in Graz.

As usual the competition was provided in the three categories
(A – contestants of the last two years, B – contestants of the 5th and
6th years, and C – contestants of the 3rd and 4th years of eight-year
grammar school). Twelve contestants (more precisely 4 in any cate-
gory) of any school took part in this competition, i.e. 60 contestants
in total.

This booklet contains all problems with solutions and results
of the 21st International Mathematical Duel from the year 2013.

Authors
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Problems



Category A (Individual Competition)

A–I–1
Let a be an arbitrary real number. Prove that real numbers b and c
certainly exist, such that

√
a2 + b2 + c2 = a + b + c

holds.

Jacek Uryga

A–I–2
Let us denote R+ = (0; +∞). Determine all functions f :R+ → R, such
that

x f (x) = x f
(

x
y

)
+ y f (y)

holds for all positive real values of x and y.

Pavel Calábek

A–I–3
Let O be the circumcenter of an acute-angled triangle ABC. Let D be
the foot of the altitude from A to the side BC. Prove that the angle
bisector of 6 CAB is also the bisector of 6 DAO.

Erich Windischbacher

A–I–4
Let α, β , γ be the interior angles of an obtuse-angled triangle with
γ > 90◦. Prove that the inequality

tan α tan β < 1

holds.

Józef Kalinowski
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Category A (Team Competition)

A–T–1
We are given the following system of equations:

x + y + z = a

x2 + y2 + z2 = b2

with real parameters a and b. Prove that the system of equations
has a real solution if and only if the inequality

|a| ≤ |b|
√

3

holds.

Jaroslav Švrček

A–T–2
We are given positive real numbers x, y, z, u with xyzu = 1. Prove

x3

y3 +
y3

z3 +
z3

u3 +
u3

x3 ≥ x2 + y2 + z2 + u2.

Pavel Calábek

A–T–3
We call positive integers that are written in decimal notation using
only the digits 1 and 2 Graz numbers. Note that 2 is a 1-digit Graz
number divisible by 21, 12 is a 2-digit Graz number divisible by 22

and 112 is a 3-digit Graz number divisible by 23.

a) Determine the smallest 4-digit Graz number divisible by 24.
b) Determine an n-digit Graz number divisible by 2n for n > 4.
c) Prove that there must always exist an n-digit Graz number di-

visible by 2n for any positive integer n.

Robert Geretschläger
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Category B (Individual Competition)

B–I–1

a) Determine all positive integers n, such that the number

n4 + 2n3 + 2n2 + 2n + 1

is a prime.
b) Determine all positive integers n, such that the number

n4 + 2n3 + 3n2 + 2n + 1

is a prime.

Jaroslav Švrček

B–I–2
Two circles c1 and c2 with radii r1 and r2 respectively (r1 > r2) are
externally tangent in point C. A common external tangent t of the
two circles is tangent to c1 in A and to c2 in B. The common tangent
of the two circles in C intersects t in the midpoint of AB. Determine
the lengths of the sides of triangle ABC in terms of r1 and r2.

Józef Kalinowski

B–I–3
Let sn denote the sum of the digits of a positive integer n. Deter-
mine whether there are infinitely many integers that cannot be rep-
resented in the form n ⋅ sn.

Jacek Uryga

B–I–4
We call a number that is written using only the digit 1 in decimal
notation a onesy number, and a number using only the digit 7 in
decimal notation a sevensy number. Determine a onesy number di-
visible by 7 and prove that for any sevensy number k, there always
exists a onesy number m such that m is a multiple of k.

Robert Geretschläger
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Category B (Team Competition)

B–T–1
Two lines p and q intersect in a point V. The line p is tangent to a
circle k in the point A. The line q intersects k in the points B and
C. The angle bisector of 6 AVB intersects the segments AB and AC
in the points K and L respectively. Prove that the triangle KLA is
isosceles.

Jaroslav Švrček

B–T–2
Determine all integer solutions of the equation

2
x

+
3
y

= 1.

Józef Kalinowski

B–T–3
We are given a function f :R → R, such that f (m + n) = f (m)f (n)
holds for all real values of m and n. Furthermore, we know that
f (8) = 6561.

a) Prove that there exists exactly one real k such that f (k) = 1
3 and

determine the value of k.
b) Prove that no real number ` exists, such that f (`) = −

1
3 holds.

Robert Geretschläger
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Category C (Individual Competition)

C–I–1
Let ABCD be a parallelogram. The circle c with diameter AB passes
through the midpoint of the side CD and through the point D. De-
termine the measure of the angle 6 ABC.

Jaroslav Švrček

C–I–2
Let n be a positive integer. Prove that the number 10n can always be
written as the sum of the squares of two different positive integers.

Jacek Uryga

C–I–3
Joe is travelling by train at a constant speed v. Every time the train
passes over a weld seam in the tracks, he hears a click. The weld
seams are always exactly 15 m apart. If Joe counts the number of
clicks, how many seconds must he count until the number of clicks
is equal to the speed of the train in km/h?

Robert Geretschläger

C–I–4
Determine all 3-digit numbers that are exactly 34 times as large as
the sum of their digits.

Robert Geretschläger
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Category C (Team Competition)

C–T–1
In a triangle ABC with |AB| = 21 and |AC| = 20, points D and E are
chosen on segments AB and AC, respectively, with |AD| = 10 and
|AE| = 8. We find that AC is perpendicular to DE. Calculate the
length of BC.

Robert Geretschläger

C–T–2
We consider positive integers that are written in decimal notation
using only one digit (possibly more than once), and call such num-
bers uni-digit numbers.

a) Determine a uni-digit number written with only the digit 7 that
is divisible by 3.

b) Determine a uni-digit number written with only the digit 3 that
is divisible by 7.

c) Determine a uni-digit number written with only the digit 5 that
is divisible by 7.

d) Prove that there cannot exist a uni-digit number written with
only the digit 7 that is divisible by 5.

Robert Geretschläger

C–T–3
We are given a circle c1 with midpoint M1 and radius r1 and a second
circle c2 with midpoint M2 and radius r2. A line t1 through M1 is
tangent to c2 in P2 and a line t2 through M2 is tangent to c1 in P1.
The line t1 intersects c1 in a point Q1 and the line t2 intersects c2
in a point Q2 in such a way that the points P1, P2, Q1 and Q2 all lie
on the same side of M1M2. Prove that the lines M1M2 and Q1Q2 are
parallel.

Robert Geretschläger
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Solutions



Category A (Individual Competition)

A–I–1
The equality √

a2 + b2 + c2 = a + b + c

is equivalent to the conditions

a2 + b2 + c2 = (a + b + c)2 and a + b + c ≥ 0, (1)

and the first one can be expressed as

ab + bc + ca = 0.

Now, let a be an arbitrary real number. Let us choose b ≠ 0 and c
such that

a + b > 0 and c = −
ab

a + b
.

The last equality yields ab + bc + ca = 0 and

a + b + c = a + b −
ab

a + b
=

a2 + ab + b2

a + b
.

Since the discriminant ∆ of the trinomial x2 + bx + b2 is equal to
−3b2 < 0, so for x = a we get a2 + ab + b2 > 0.

Thus we proved that the for an arbitrary a there exist b and c
that fulfill the conditions (1).

Another solution. For arbitrary a ≥ 0 one can take b = c = 0 and for
arbitrary a < 0 the given equality is fulfilled for b = c = −2a.

A–I–2
Let t be an arbitrary positive real number. For x = ty we obtain

ty f (ty) = ty f (t) + y f (y).

Rewriting this equation we get

f (ty) = f (t) +
f (y)

t
.
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for arbitrary positive t and y. Exchanging t and y we have

f (yt) = f (y) +
f (t)
y

.

Comparing the right sides of the last two equations we get

f (t)
(

1 −
1
y

)
= f (y)

(
1 −

1
t

)
.

Substituting y = 2 with notation a = 2 f (2) ∈ R we obtain

f (t) = 2 f (2)
(

1 −
1
t

)
= a

(
1 −

1
t

)
.

After easy checking we can see that the function f (x) = a
(
1 −

1
x

)
sat-

isfies the given equation for arbitrary real a.

A–I–3
Without loss of generality we can assume that β ≥ γ (see the picture).
Let M be the midpoint of the side AC of the triangle ABC and U the
point of intersection of the angle bisector at A with the side BC.
From the picture we can see that

|6 AOM| = | 6 ABD| = | 6 ABC| = β .

β

β

γ

A

B CD

M

O

U
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Since ABD and AOM are similar triangles (the angle 6 ABC is equal
to half of the angle 6 AOC in the circumcircle of ABC), |6 BAD| =
| 6 OAM| follows. Thus |6 DAU| = |6 OAU|.

Therefore AU is also the angle bisector of DAO and the proof is
finished.

A–I–4
Firstly, we can see that α +β = 180◦ − γ < 90◦ and thus tan(α +β ) > 0.
Using the well-known formula we have

tan(α + β ) =
tan α + tan β

1 − tan α tan β
.

Since the numerator of the fraction on the right side is evidently a
positive real number, the denominator of the same fraction must be
positive as well. Therefore it follows that

1 − tan α tan β > 0, i.e. tan α tan β < 1,
and the proof is complete.

Another solution. For α + β < 90◦ we have cos(α + β ) > 0. Using the
well-known formula we further get

cos(α + β ) = cos α cos β − sin α sin β > 0
and thus

cos α cos β > sin α sin β .
Since cos α cos β ≠ 0 we obtain after a short manupulation

tan α ⋅ tan β =
sin α

cos α
⋅

sin β

cos β
< 1

which proves the given inequality.

Another solution. Let CP denote the altitude from C and h its length.
Let D be a point on the side longest AB, such that |6 ACD| = 90◦.
Further, we denote |AP| = p, |PD| = q and |DB| = r (see picture).

βα

A B

C

DPp q r

h
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We then obtain

tan α ⋅ tan β =
h
p

⋅
h

q + r
<

h
p

⋅
h
q

=
h2

pq
= 1,

which completes the proof.

Another solution. As in the previous solution we will consider the
altitude CP of the length h. On the ray PC we can choose a point E,
such that ABE is a right-angled triangle with hypotenuse AB (see
picture). Finally, let us write |PE| = w > h, |AP| = u and |PD| = v.

βα

A B

C

E

Pu v

h

We then obtain the following estimate

tan α ⋅ tan β =
h
u

⋅
h
v

<
w
u

⋅
w
v

=
w2

uv
= 1

and the proof is finished.

Category A (Team Competition)

A–T–1
Firstly, we will assume that a ≥ 0. The first equation x + y + z = a
with a real parameter a is an analytical equation of the plane which
contains the points A[a, 0, 0], B[0, a, 0] and C[0, 0, a] (see the picture)
in the Cartesian system Oxyz with the origin at the point O[0, 0, 0].
Therefore ABCO is a tetrahedron with edges

|AB| = |BC| = |CA| = a
√

2 and |AO| = |BO| = |CO| = a.
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Similarly the second equation x2 + y2 + z2 = b2 with a real parameter
b is an analytical equation of a sphere with the center in O with the
radius |b|. Similarly for a < 0.

A[a, 0, 0]

B[0, a, 0]

C[0, 0, a]

O

T

x

y

z

Let T be the centroid of the face ABC of the tetrahedron ABCO
with |OT| = d. It is easy to see that the segment OT is the altitude
of this tetrahedron from the vertex O. By double counting we can
compute the volume V of the tetrahedron ABCO. We have

V =
1
6

a3 =
1
3

P ⋅ d,

where P is the area of the face ABC. After easy manipulation we get

P =
1
2

a
√

2 ⋅ a
√

3
2

=
1
2

a2
√

3

and thus
V =

1
6

a3 =
1
6

a2
√

3 ⋅ d,

which implies

d =
√

3
3

a.

Finally, the given system of equations with unknowns x, y, z (and
real parameters a, b) has a real solution if and only if the inequality
d ≤ |b| holds, i.e. √

3
3

|a| ≤ |b|.
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The last inequality is equivalent to |a| ≤ |b|
√

3 which concludes the
proof.

Another solution. Let a triple (x1, x2, x3) of real numbers be a solu-
tion of the given system of equations. Using the Cauchy-Schwarz
inequality we get

3b2 = (12 + 12 + 12)(x2
1 + x2

2 + x2
3) ≥ (x1 + x2 + x3)2 = a2, (2)

i.e. a2 ≤ 3b2 and therefore |a| ≤ |b|
√

3.

Conversely we can assume that |a| ≤ |b|
√

3. This inequality implies
that there exist real numbers x1, x2, x3 fulfilling the given system of
equations (by the inequality (2)) and the proof is finished.

A–T–2
Using the AM-GM inequality for six positive numbers x3

y3 , x3

y3 , x3

y3 , y3

z3 ,
y3

z3 , z3

u3 we have

1
6

(
3 ⋅

x3

y3 + 2 ⋅
y3

z3 +
z3

u3

)
≥

6

√
x9

y3z3u3 = 6
√

x12 = x2.

Cyclically we also obtain

1
6

(
3 ⋅

y3

z3 + 2 ⋅
z3

u3 +
u3

x3

)
≥ y2,

1
6

(
3 ⋅

z3

u3 + 2 ⋅
u3

x3 +
x3

y3

)
≥ z2,

1
6

(
3 ⋅

u3

x3 + 2 ⋅
x3

y3 +
y3

z3

)
≥ u2.

Adding up all four inequalities we obtain the required inequality.

Remark: For the proof we can also use the rearrangement inequality
for the quadruples(√

x3

y3 ,

√
y3

z3 ,

√
z3

u3 ,

√
u3

x3

)
,

(
x
y

,
y
z

,
z
u

,
u
x

)
,

(√
x
y

,
√

y
z

,
√

z
u

,
√

u
x

)
.
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A–T–3
We can prove by induction that there in fact exists a unique n-digit
Graz number for any positive integer n. Obviously only 2 is a 1-digit
Graz number, as 1 is not divisible by 21, but 2 is. We can therefore
assume that there exists a unique k-digit Graz number g for some
k ≥ 1. Since g is divisible by 2k, either g ≡ 0 (mod 2k+1) or g ≡ 2k

(mod 2k+1) must hold. Since 10k ≡ 2k (mod 2k+1) and 2 ⋅ 10k ≡ 0
(mod 2k+1), we have either 10k + g ≡ 0 (mod 2k+1) or 2 ⋅ 10k + g ≡ 0
(mod 2k+1), and therefore the unique existence of an n − 1-digit Graz
number.

Now that we know this, it is easy to complete the solution. Since
112 is the 3-digit Graz number, and 112 = 16 ⋅ 7 is divisible by 16,
2112 is the 4-digit Graz number. Since 2112 = 32 ⋅ 66 is divisible
by 25 = 32, 22112 is the 5-digit Graz number, and the solution is
complete.

Category B (Individual Competition)

B–I–1

a) The given expression can be factorized by the following way

n4 + 2n3 + 2n2 + 2n + 1 = (n4 + 2n3 + n2) + (n2 + 2n + 1) =

= n2(n + 1)2 + (n + 1)2 = (n2 + 1)(n + 1)2.

Since 2 ≤ n2 +1 < (n+1)2 for each positive integer n, the given ex-
pression is a product of two positive integers which are greater
than or equal to 2. It therefore follows that the given expression
is always a composite number.

b) Similarly to case a), we have

n4 + 2n3 + 3n2 + 2n + 1 = (n2 + n + 1)2.

The given expression is the square of a positive integer which
is greater than or equal to 3 and therefore there cannot exist a
positive integer n such that the given expression is a prime.
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B–I–2
Let D be the point of intersection of the common internal tangent of
circles c1 and c2 in C with tangent t. Since

|AD| = |CD| = |BD|

we can see that D is the midpoint of the segment AB and simul-
taneously the center of the Thales circle with diameter AB passing
through C. ABC is therefore a right-angled triangle with hypotenuse
AB.

A

B

C

D

E

S1 S2

c1

c2

tr1
r2

It is easy to compute that the length of the hypotenuse AB is
2
√

r1r2. Now we can compute the lengths of both legs of the triangle
ABC. Using the Pythagorean theorem in the triangle ADS1 we have

|S1D| =
√

r1(r1 + r2).

Let E be the midpoint of the segment AC. Using the similarity of
right-angled triangles S1DA and ADE we have

|AE|
√

r1r2
=

r1√
r1(r1 + r2)

.

Thus
|AC| = 2 ⋅ |AE| = 2r1

√
r1r2

r1(r1 + r2)

and analogously

|BC| = 2r2

√
r1r2

r2(r1 + r2)
.
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Conclusion. In summary, we have obtained

|AB| = 2
√

r1r2, |AC| = 2r1

√
r1r2

r1(r1 + r2)
,

and
|BC| = 2r2

√
r1r2

r2(r1 + r2)
.

B–I–3
Write the number n as

n = 10kak + 10k−1ak−1 + . . . + 10a1 + a0,

where ak, ak−1, . . . , a0 are all the digits of n. Thus

n − sn = 10k−1ak−1 + . . . + 10a1 + a0 − (ak + ak−1 + . . . + a0) =
= (10k

− 1)ak + (10k−1
− 1)ak−1 + . . . + (10 − 1)a1.

Note that

10m
− 1 = (10 − 1)(10m−1 + 10m−2 + . . . + 102 + 101 + 1),

so the numbers 10m − 1 are divisible by 9 for all positive integers
m. This implies that the number n − sn is divisible by 9 and so by
3. Hence we get that both n as well as sn give the same remainder
when divided by 3.

One can easily show that the product of two integers, which give
the same remainder when divided by 3, can never give the remain-
der 2. In fact, for arbitrary integers p and q we have

(3p)(3q) = 3(3pq),
(3p + 1)(3q + 1) = 3(3pq + p + q) + 1,
(3p + 2)(3q + 2) = 3(3pq + 2p + 2q + 1) + 1.

Therefore no integer of the form 3k + 2 can be represented as
the product of n and sn. This proves that there are infinitely many
integers with the desired property.
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Another solution. We know that n is divisible by 3 if and only if sn is
divisible by 3 as well. Let a be a positive integer not divisible by 3
(there exist infinitely many such integers). If the number 3a can be
expressed as the product n ⋅ sn, one of the factors n or sn is divisible
by 3, and so the second one is divisible by 3 too and the product
n ⋅ sn is divisible by 9. It follows that a is divisible by 3, which is a
contradiction. It follows that the number 3a cannot be expressed in
the form n ⋅ sn.

B–I–4
A possible onesy number divisible by seven is given by 111111 =
111 ⋅ 1001 = 111 ⋅ 7 ⋅ 11 ⋅ 13.

In order to see that there always exists a onesy multiple of any
sevensy number k, note that there exist an infinite number of onesy
numbers. By the Dirichlet principle, there must therefore exist two
different onesy numbers m1 > m2 with m1 ≡ m2 (mod k). It there-
fore follows that m1 − m2 is divisible by k. The number m1 − m2 can
be written as m1 − m2 = m ⋅ 10r, where m is also a onesy number.
Since k is certainly not divible by 2 or 5, it follows that m must also
be divisible by k, and the proof is complete.

Category B (Team Competition)

B–T–1

A

B

C

V K L k

p

q
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Since p is tangent to the circle k, | 6 VAB| = | 6 VCA| must hold. Since
the line KL is the angle bisector of the angle AVC we get

| 6 AKL| = |6 VAK | + | 6 AVK | = | 6 VAB| + |6 AVK | =
= | 6 VCA| + | 6 CVL| = | 6 VCL| + |6 CVL| = |6 ALV | = |6 ALK |.

This means that AKL is an isosceles triangle with the base KL,
which completes the proof.

B–T–2
We can rewrite the given equation in the form

xy − 3x − 2y + 6 = 6, i.e. (x − 2)(y − 3) = 6.

The integer 6 can be factored as the product of two integers as fol-
lows:

6 = 1⋅6 = 6⋅1 = 2⋅3 = 3⋅2 = (−1)⋅(−6) = (−6)⋅(−1) = (−2)⋅(−3) = (−3)⋅(−2).

Therefore we have to discuss eight cases in the following table.

x − 2 1 6 2 3 −1 −6 −2 −3
y − 3 6 1 3 2 −6 −1 −3 −2

x 3 8 4 5 1 −4 0 −1
y 9 4 6 5 −3 2 0 1

Since x ≠ 0 and y ≠ 0, the given equation has exactly seven
solutions, namely:

(x, y) ∈ {(3; 9), (8; 4), (4; 6), (5; 5), (1; −3), (−4; 2), (−1; 1)}.

B–T–3
It is perhaps easiest to first note that there can be no real number
` such that f (`) < 0 holds. If this were the case, we would have
0 > f (`) = f

(
`
2 + `

2

)
= f
(
`
2

)2, which is not possible. This completes the
proof of the part b).
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We now note that f (m) = f (m + 0) = f (m) ⋅ f (0) implies f (0) = 1
and 1 = f (0) = f (−m + m) = f (−m) ⋅ f (m) implies f (−m) = 1

f (m) . If
f (m) = f (n) for some m > n, we have f (m − n) = f (m) ⋅ f (−n) = 1 = f (0),
and therefore f (x) = 1 for any rational multiple of m − n, which is
clearly not possible if f (0) = 1 and f (8) > 1.

Since 6561 = f (8) = f (4)2, we have f (4) = 81, and similarly f (2) =
9 and f (1) = 3. We therefore have the unique value of f (−1) = 1

3 .

Category C (Individual Competition)

C–I–1
Let S and T denote the midpoints of the sides AB, CD of the given
parallelogram respectively, and 2r their lengths (see the picture).
Since the points D and T lie on the Thales circle with diameter AB,
the equalities

|SA| = |SB| = |ST| = |AD| = |BC| = r

hold. Further, it is easy to see that the chords AB and DT of the
circle c are parallel.

A B

CD T

S

c

r r

r r r r

r
r

The quadrilateral ABTD is therefore an isosceles trapezoid with
bases AB, DT and with |AD| = |BT| = r. Therefore SBT is an equilat-
eral triangle with sides of the length r which yields

| 6 SBT| = |6 ABT| = 60◦.

Similarly we can prove that BCT is also an equilateral triangle with
sides of the length r, and thus |6 ABC| = 120◦.
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C–I–2
For n = 1 and n = 2 we have

101 = 12 + 32 and 102 = 62 + 82.

Now, observe that in case, if n is a positive odd number, that is,
if n = 2k − 1 with k > 0, then

10n = 10n−1
⋅ 10 = 102k−2

⋅ (12 + 32) = (10k−1)2 + (3 ⋅ 10k−1)2

and if n = 2k with k > 0 is a positive even number, then we have

10n = 10n−2
⋅ 102 = 102k−2

⋅ (62 + 82) = (10k−1)2 + (3 ⋅ 10k−1)2.

This proves our assumption for every positive integer n.

C–I–3
If the train is travelling at v km/h, we know that it is travelling at

v
3,6 m/sec. This means that it crosses a total of v

3,6 : 15 = v
54 stretches

of 15 m track each second, or exactly v such stretches of 15 m track
in 54 seconds. Joe must therefore count for exactly 54 seconds.

C–I–4
A three digit number can be written in the form 100a + 10b + c. The
sum of the number’s digits is a + b + c, and any number with the
required property must therefore also have the property

100a + 10b + c = 34(a + b + c) ⇐⇒ 66a − 33c = 24b.

Dividing by 3, this is equivalent to 11(2a − c) = 8b. Since the left
side of this equation is divisible by 11, and no single digit positive
number can be divisible by 11, it follows that b must be equal to 0.
In this case, the property is equivalent to 2a = c, and the numbers
fulfilling the requirements are therefore 102, 204, 306 and 408.
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Category C (Team Competition)

C–T–1
Let F be the foot of C on AB. In the triangle ADE, it is easy to
calculate the length of |DE| = 6. Right-angled triangles ADE and
ACF are similar since they have a common angle in A, and since
|AC| = 20 = 2 ⋅ |AD|, we have |CF| = 2 ⋅ |DE| = 12 and |AF| = 2 ⋅ |AE| =
16. In the right-angled triangle CFB we therefore have the sides
|FC| = 12 and |FB| = |AB| − |AF| = 21 − 16 = 5, and therefore the
hypotenuse |BC| =

√
52 + 122 = 13.

A B

C

D

E

F10

8 6 12

5

13

C–T–2
a) 777 = 7 ⋅ 111 = 7 ⋅ 37 ⋅ 3.
b) 333333 = 333 ⋅ 1001 = 333 ⋅ 7 ⋅ 11 ⋅ 13.
c) 555555 = 555 ⋅ 7 ⋅ 11 ⋅ 13.
d) The last digit of any number divisible by 5 is always either 0 or 5.
Any number that is divisible by 5 can therefore not be written using
only the digit 7.

C–T–3
Let F1 and F2 be the feet of Q1 and Q2 on M1M2 respectively, and
denote the distance between M1 and M2 as d. Right-angled triangles
M1M2P2 and M1Q1F1 are similar, since they have a common angle
in M1. It therefore follows that
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M1 M2

P1

P2

 Q1  Q2

F1 F2

t1

t2

c1
c2

d

r1
r2

|Q1F1| : |M1Q1| = |M2P2| : |M1M2|

holds which is equivalent to |Q1F1| : r1 = r2 : d or |Q1F1| = r1r2/d. By
completely analogous calculation with reversed roles of the circles,
we also obtain |Q2F2| = r1r2/d, and since Q1 and Q2 are equidistant
from M1M2, it follows that the lines M1M2 and Q1Q2 are parallel as
claimed.
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Results



Category A (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Bernd Prach Graz Kepler 8 8 8 8 32
2. Łukasz Ławniczak I.LO Chorzów 8 7 8 8 31
3. Lukáš Knob GJŠ Přerov 8 3 8 8 27
4. Jarosław Socha I.LO Chorzów 8 2 8 8 26
5. Clemens Andritsch Graz Kepler 7 2 8 8 25
5. Petr Vincena GJŠ Přerov 8 1 8 8 25
7. Petr Vaněk GMK Bílovec 7 2 7 8 24
8. Markéta Calábková GJŠ Přerov 4 2 8 8 22
9. Marian Poljak GJŠ Přerov 8 1 3 8 20

10. Jan Šarman GMK Bílovec 0 2 8 8 18
11. Artur Minorczyk I.LO Chorzów 2 3 0 8 13
11. Heinz Prach Graz Kepler 3 2 0 8 13
13. Jan Krejčí GMK Bílovec 4 2 0 0 6
14. Michal Šrůtek GMK Bílovec 1 4 0 0 5
15. Benjamin von Berg Graz All-Stars 2 2 0 0 4
16. Marek Grabowski I.LO Chorzów 2 0 0 0 2
16. Hannah Lichtenegger Graz All-Stars 2 0 0 0 2
16. Viet Anh Nguyen Graz All-Stars 1 1 0 0 2
16. Andrea Triebl Graz All-Stars 2 0 0 0 2
20. Martina Svibic Graz Kepler 0 0 0 0 0
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Category B (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Tomáš Kremel GJŠ Přerov 0 8 8 2 18
2. Jan Gocník GJŠ Přerov 4 0 8 2 14
3. Lucie Holušová GMK Bílovec 4 8 0 0 12
4. Vivian Obernosterer Graz All-Stars 2 0 7 2 11
4. Gerda Prach Graz Kepler 0 1 8 2 11
4. Michał Ślusarczyk I.LO Chorzów 0 1 8 2 11
7. Michal Koupil GJŠ Přerov 0 0 8 2 10
7. Jakub Paliga I.LO Chorzów 0 0 8 2 10
9. Michał Osadnik I.LO Chorzów 0 1 8 0 9

10. Benedikt Andritsch Graz Kepler 0 6 0 1 7
11. Jiří Andrlík GJŠ Přerov 0 5 0 0 5
11. Alicja Kalisz I.LO Chorzów 1 2 0 2 5
13. Zuzana Beigerová GMK Bílovec 0 0 0 2 2
13. Jiří Grygar GMK Bílovec 0 0 0 2 2
13. Benjamin Holter Graz All-Stars 0 0 0 2 2
13. Filip Rescec Graz All-Stars 0 0 0 2 2
17. Tomáš Moravec GMK Bílovec 0 1 0 0 1
17. Doris Vogel Graz All-Stars 0 1 0 0 1
19. Doris Prach Graz Kepler 0 0 0 0 0
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Category C (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Marcin Socha I.LO Chorzów 8 8 8 8 32
1. Marcin Sztuka I.LO Chorzów 8 8 8 8 32
1. Karol Szydlik I.LO Chorzów 8 8 8 8 32
4. Jan Równicki I.LO Chorzów 8 8 7 8 31
5. Bára Tížková GMK Bílovec 8 6 8 8 30
6. Konstantin Andritsch Graz Kepler 8 4 7 8 27
7. Daniel Horiatakis Graz Kepler 8 8 6 4 26
8. Anežka Malčíková GMK Bílovec 0 7 8 8 23
9. Zdeněk Kroča GJŠ Přerov 0 0 8 7 15

10. Karolína Vojkůvková GMK Bílovec 4 7 0 3 14
11. Berenika Čermáková GMK Bílovec 2 0 0 8 10
12. Denisa Chytilová GJŠ Přerov 0 6 0 3 9
13. Alexander Kropiunig Graz All-Stars 0 0 1 7 8
14. Vinzenz Holzner Graz Kepler 2 0 1 3 6
15. Christian Thallinger Graz All-Stars 0 0 1 3 4
16. Lukáš Kremel GJŠ Přerov 0 0 0 3 3
17. Verena Haas Graz Kepler 0 0 1 0 1
17. Jiří Hanák GJŠ Přerov 1 0 0 0 1
17. Anja Zotter Graz All-Stars 0 0 0 1 1
20. Regina Salloker Graz All-Stars 0 0 0 0 0



Category A (Team Competition)

Rank School 1 2 3 ∑

1. Graz Kepler 8 8 8 24
2. GJŠ Přerov 7 1 8 16
3. I.LO Chorzów 8 0 7 15
4. Graz All-Stars 6 0 8 14
5. GMK Bílovec 0 0 2 2

Category B (Team Competition)

Rank School 1 2 3 ∑

1. Graz Kepler 8 8 0 16
2. GJŠ Přerov 0 5 4 9
3. GMK Bílovec 0 8 0 8
4. Graz All-Stars 0 6 0 6
4. I.LO Chorzów 0 2 4 6

Category C (Team Competition)

Rank School 1 2 3 ∑

1. I.LO Chorzów 8 8 8 24
2. Graz All-Stars 4 7 0 11
3. GMK Bílovec 1 8 0 9
3. GJŠ Přerov 1 8 0 9
3. Graz Kepler 1 8 0 9
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Vydala a vytiskla Univerzita Palackého v Olomouci
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