Palacký University Olomouc, Faculty of Science

MATHEMATICAL DUEL '13

Jaroslav Švrček
Pavel Calábek
Robert Geretschläger
Józef Kalinowski
Jacek Uryga

Palacký University Olomouc, Faculty of Science

Creation of this booklet is co-funded by the European Social Fund and national budget of the Czech Republic in the framework of the project No. CZ.1.07/1.1.00/26.0047 "Mathematics for everyone".

© Jaroslav Švrček, Pavel Calábek, Robert Geretschläger, Józef Kalinowski, Jacek Uryga, 2013

© Univerzita Palackého v Olomouci, 2013
First edition

Olomouc 2013

ISBN 978-80-244-3465-0

Preface

The 21st International Mathematical Duel was held from 10-13 March 2013 in Graz. In this year the competition was organized by Bundesrealgymnasium Kepler in Graz.

Five school-teams from Austria, Czech Republic and Poland took part in this traditional mathematical competition, namely from Bundesrealgymnasium Kepler, Graz, Gymnázium M. Koperníka, Bílovec, I Liceum Ogólnokształcace im. J. Słowackiego, Chorzów, Gymnázium J. Škody, Přerov, as well as guest team called All-Stars Graz, made up of students from three schools in Graz.

As usual the competition was provided in the three categories (A - contestants of the last two years, B - contestants of the 5th and 6 th years, and C - contestants of the 3 rd and 4 th years of eight-year grammar school). Twelve contestants (more precisely 4 in any category) of any school took part in this competition, i.e. 60 contestants in total.

This booklet contains all problems with solutions and results of the 21st International Mathematical Duel from the year 2013.

Authors

Problems

Category A (Individual Competition)

A-I-1

Let a be an arbitrary real number. Prove that real numbers b and c certainly exist, such that

$$
\sqrt{a^{2}+b^{2}+c^{2}}=a+b+c
$$

holds.
Jacek Uryga

A-I-2

Let us denote $\mathbb{R}^{+}=(0 ;+\infty)$. Determine all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$, such that

$$
x f(x)=x f\left(\frac{x}{y}\right)+y f(y)
$$

holds for all positive real values of x and y.
Pavel Calábek

A-I-3

Let O be the circumcenter of an acute-angled triangle $A B C$. Let D be the foot of the altitude from A to the side $B C$. Prove that the angle bisector of $\angle C A B$ is also the bisector of $\angle D A O$.

Erich Windischbacher

A-I-4

Let α, β, γ be the interior angles of an obtuse-angled triangle with $\gamma>90^{\circ}$. Prove that the inequality

$$
\tan \alpha \tan \beta<1
$$

holds.

Category A (Team Competition)

A-T-1

We are given the following system of equations:

$$
\begin{aligned}
x+y+z & =a \\
x^{2}+y^{2}+z^{2} & =b^{2}
\end{aligned}
$$

with real parameters a and b. Prove that the system of equations has a real solution if and only if the inequality

$$
|a| \leq|b| \sqrt{3}
$$

holds.
Jaroslav Šurček

A-T-2

We are given positive real numbers x, y, z, u with $x y z u=1$. Prove

$$
\frac{x^{3}}{y^{3}}+\frac{y^{3}}{z^{3}}+\frac{z^{3}}{u^{3}}+\frac{u^{3}}{x^{3}} \geq x^{2}+y^{2}+z^{2}+u^{2} .
$$

Pavel Calábek

A-T-3

We call positive integers that are written in decimal notation using only the digits 1 and 2 Graz numbers. Note that 2 is a 1 -digit Graz number divisible by $2^{1}, 12$ is a 2 -digit Graz number divisible by 2^{2} and 112 is a 3 -digit Graz number divisible by 2^{3}.
a) Determine the smallest 4-digit Graz number divisible by 2^{4}.
b) Determine an n-digit Graz number divisible by 2^{n} for $n>4$.
c) Prove that there must always exist an n-digit Graz number divisible by 2^{n} for any positive integer n.

Category B (Individual Competition)

B-I-1

a) Determine all positive integers n, such that the number

$$
n^{4}+2 n^{3}+2 n^{2}+2 n+1
$$

is a prime.
b) Determine all positive integers n, such that the number

$$
n^{4}+2 n^{3}+3 n^{2}+2 n+1
$$

is a prime.
Jaroslav Šurček

B-I-2

Two circles c_{1} and c_{2} with radii r_{1} and r_{2} respectively ($r_{1}>r_{2}$) are externally tangent in point C. A common external tangent t of the two circles is tangent to c_{1} in A and to c_{2} in B. The common tangent of the two circles in C intersects t in the midpoint of $A B$. Determine the lengths of the sides of triangle $A B C$ in terms of r_{1} and r_{2}.

Józef Kalinowski

B-I-3

Let s_{n} denote the sum of the digits of a positive integer n. Determine whether there are infinitely many integers that cannot be represented in the form $n \cdot s_{n}$.

Jacek Uryga

B-I-4

We call a number that is written using only the digit 1 in decimal notation a onesy number, and a number using only the digit 7 in decimal notation a sevensy number. Determine a onesy number divisible by 7 and prove that for any sevensy number k, there always exists a onesy number m such that m is a multiple of k.

Robert Geretschläger

Category B (Team Competition)

B-T-1

Two lines p and q intersect in a point V. The line p is tangent to a circle k in the point A. The line q intersects k in the points B and C. The angle bisector of $\angle A V B$ intersects the segments $A B$ and $A C$ in the points K and L respectively. Prove that the triangle $K L A$ is isosceles.

Jaroslav Šurček

B-T-2

Determine all integer solutions of the equation

$$
\frac{2}{x}+\frac{3}{y}=1 .
$$

Józef Kalinowski

B-T-3

We are given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, such that $f(m+n)=f(m) f(n)$ holds for all real values of m and n. Furthermore, we know that $f(8)=6561$.
a) Prove that there exists exactly one real k such that $f(k)=\frac{1}{3}$ and determine the value of k.
b) Prove that no real number ℓ exists, such that $f(\ell)=-\frac{1}{3}$ holds.

Category C (Individual Competition)

C-I-1

Let $A B C D$ be a parallelogram. The circle c with diameter $A B$ passes through the midpoint of the side $C D$ and through the point D. Determine the measure of the angle $\angle A B C$.

Jaroslav Šurček

C-I-2

Let n be a positive integer. Prove that the number 10^{n} can always be written as the sum of the squares of two different positive integers.

Jacek Uryga

C-I-3

Joe is travelling by train at a constant speed v. Every time the train passes over a weld seam in the tracks, he hears a click. The weld seams are always exactly 15 m apart. If Joe counts the number of clicks, how many seconds must he count until the number of clicks is equal to the speed of the train in km / h ?

Robert Geretschläger

C-I-4

Determine all 3 -digit numbers that are exactly 34 times as large as the sum of their digits.

Robert Geretschläger

Category C (Team Competition)

C-T-1

In a triangle $A B C$ with $|A B|=21$ and $|A C|=20$, points D and E are chosen on segments $A B$ and $A C$, respectively, with $|A D|=10$ and $|A E|=8$. We find that $A C$ is perpendicular to $D E$. Calculate the length of $B C$.

Robert Geretschläger

C-T-2

We consider positive integers that are written in decimal notation using only one digit (possibly more than once), and call such numbers uni-digit numbers.
a) Determine a uni-digit number written with only the digit 7 that is divisible by 3 .
b) Determine a uni-digit number written with only the digit 3 that is divisible by 7 .
c) Determine a uni-digit number written with only the digit 5 that is divisible by 7 .
d) Prove that there cannot exist a uni-digit number written with only the digit 7 that is divisible by 5 .

Robert Geretschläger

C-T-3

We are given a circle c_{1} with midpoint M_{1} and radius r_{1} and a second circle c_{2} with midpoint M_{2} and radius r_{2}. A line t_{1} through M_{1} is tangent to c_{2} in P_{2} and a line t_{2} through M_{2} is tangent to c_{1} in P_{1}. The line t_{1} intersects c_{1} in a point Q_{1} and the line t_{2} intersects c_{2} in a point Q_{2} in such a way that the points P_{1}, P_{2}, Q_{1} and Q_{2} all lie on the same side of $M_{1} M_{2}$. Prove that the lines $M_{1} M_{2}$ and $Q_{1} Q_{2}$ are parallel.

Solutions

Category A (Individual Competition)

A-I-1

The equality

$$
\sqrt{a^{2}+b^{2}+c^{2}}=a+b+c
$$

is equivalent to the conditions

$$
\begin{equation*}
a^{2}+b^{2}+c^{2}=(a+b+c)^{2} \quad \text { and } \quad a+b+c \geq 0 \tag{1}
\end{equation*}
$$

and the first one can be expressed as

$$
a b+b c+c a=0 .
$$

Now, let a be an arbitrary real number. Let us choose $b \neq 0$ and c such that

$$
a+b>0 \quad \text { and } \quad c=-\frac{a b}{a+b} .
$$

The last equality yields $a b+b c+c a=0$ and

$$
a+b+c=a+b-\frac{a b}{a+b}=\frac{a^{2}+a b+b^{2}}{a+b} .
$$

Since the discriminant Δ of the trinomial $x^{2}+b x+b^{2}$ is equal to $-3 b^{2}<0$, so for $x=a$ we get $a^{2}+a b+b^{2}>0$.

Thus we proved that the for an arbitrary a there exist b and c that fulfill the conditions (1).

Another solution. For arbitrary $a \geq 0$ one can take $b=c=0$ and for arbitrary $a<0$ the given equality is fulfilled for $b=c=-2 a$.

A-I-2

Let t be an arbitrary positive real number. For $x=t y$ we obtain

$$
t y f(t y)=t y f(t)+y f(y)
$$

Rewriting this equation we get

$$
f(t y)=f(t)+\frac{f(y)}{t}
$$

for arbitrary positive t and y. Exchanging t and y we have

$$
f(y t)=f(y)+\frac{f(t)}{y} .
$$

Comparing the right sides of the last two equations we get

$$
f(t)\left(1-\frac{1}{y}\right)=f(y)\left(1-\frac{1}{t}\right) .
$$

Substituting $y=2$ with notation $a=2 f(2) \in \mathbb{R}$ we obtain

$$
f(t)=2 f(2)\left(1-\frac{1}{t}\right)=a\left(1-\frac{1}{t}\right) .
$$

After easy checking we can see that the function $f(x)=a\left(1-\frac{1}{x}\right)$ satisfies the given equation for arbitrary real a.

A-I-3

Without loss of generality we can assume that $\beta \geq \gamma$ (see the picture). Let M be the midpoint of the side $A C$ of the triangle $A B C$ and U the point of intersection of the angle bisector at A with the side $B C$. From the picture we can see that

$$
|\angle A O M|=|\angle A B D|=|\angle A B C|=\beta .
$$

Since $A B D$ and $A O M$ are similar triangles (the angle $\angle A B C$ is equal to half of the angle $\angle A O C$ in the circumcircle of $A B C$), $|\angle B A D|=$ $|\angle O A M|$ follows. Thus $|\angle D A U|=|\angle O A U|$.

Therefore $A U$ is also the angle bisector of $D A O$ and the proof is finished.

A-l-4

Firstly, we can see that $\alpha+\beta=180^{\circ}-\gamma<90^{\circ}$ and thus $\tan (\alpha+\beta)>0$. Using the well-known formula we have

$$
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} .
$$

Since the numerator of the fraction on the right side is evidently a positive real number, the denominator of the same fraction must be positive as well. Therefore it follows that

$$
1-\tan \alpha \tan \beta>0, \quad \text { i.e. } \quad \tan \alpha \tan \beta<1,
$$

and the proof is complete.
Another solution. For $\alpha+\beta<90^{\circ}$ we have $\cos (\alpha+\beta)>0$. Using the well-known formula we further get

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta>0
$$

and thus

$$
\cos \alpha \cos \beta>\sin \alpha \sin \beta
$$

Since $\cos \alpha \cos \beta \neq 0$ we obtain after a short manupulation

$$
\tan \alpha \cdot \tan \beta=\frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}<1
$$

which proves the given inequality.
Another solution. Let $C P$ denote the altitude from C and h its length. Let D be a point on the side longest $A B$, such that $|\angle A C D|=90^{\circ}$. Further, we denote $|A P|=p,|P D|=q$ and $|D B|=r$ (see picture).

We then obtain

$$
\tan \alpha \cdot \tan \beta=\frac{h}{p} \cdot \frac{h}{q+r}<\frac{h}{p} \cdot \frac{h}{q}=\frac{h^{2}}{p q}=1,
$$

which completes the proof.
Another solution. As in the previous solution we will consider the altitude $C P$ of the length h. On the ray $P C$ we can choose a point E, such that $A B E$ is a right-angled triangle with hypotenuse $A B$ (see picture). Finally, let us write $|P E|=w>h,|A P|=u$ and $|P D|=v$.

We then obtain the following estimate

$$
\tan \alpha \cdot \tan \beta=\frac{h}{u} \cdot \frac{h}{v}<\frac{w}{u} \cdot \frac{w}{v}=\frac{w^{2}}{u v}=1
$$

and the proof is finished.

Category A (Team Competition)

A-T-1

Firstly, we will assume that $a \geq 0$. The first equation $x+y+z=a$ with a real parameter a is an analytical equation of the plane which contains the points $A[a, 0,0], B[0, a, 0]$ and $C[0,0, a]$ (see the picture) in the Cartesian system $O x y z$ with the origin at the point $O[0,0,0]$. Therefore $A B C O$ is a tetrahedron with edges

$$
|A B|=|B C|=|C A|=a \sqrt{2} \quad \text { and } \quad|A O|=|B O|=|C O|=a .
$$

Similarly the second equation $x^{2}+y^{2}+z^{2}=b^{2}$ with a real parameter b is an analytical equation of a sphere with the center in O with the radius $|b|$. Similarly for $a<0$.

Let T be the centroid of the face $A B C$ of the tetrahedron $A B C O$ with $|O T|=d$. It is easy to see that the segment $O T$ is the altitude of this tetrahedron from the vertex O. By double counting we can compute the volume V of the tetrahedron $A B C O$. We have

$$
V=\frac{1}{6} a^{3}=\frac{1}{3} P \cdot d,
$$

where P is the area of the face $A B C$. After easy manipulation we get

$$
P=\frac{1}{2} a \sqrt{2} \cdot a \sqrt{\frac{3}{2}}=\frac{1}{2} a^{2} \sqrt{3}
$$

and thus

$$
V=\frac{1}{6} a^{3}=\frac{1}{6} a^{2} \sqrt{3} \cdot d,
$$

which implies

$$
d=\frac{\sqrt{3}}{3} a
$$

Finally, the given system of equations with unknowns x, y, z (and real parameters a, b) has a real solution if and only if the inequality $d \leq|b|$ holds, i.e.

$$
\frac{\sqrt{3}}{3}|a| \leq|b| \text {. }
$$

The last inequality is equivalent to $|a| \leq|b| \sqrt{3}$ which concludes the proof.

Another solution. Let a triple (x_{1}, x_{2}, x_{3}) of real numbers be a solution of the given system of equations. Using the Cauchy-Schwarz inequality we get

$$
\begin{equation*}
3 b^{2}=\left(1^{2}+1^{2}+1^{2}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \geq\left(x_{1}+x_{2}+x_{3}\right)^{2}=a^{2}, \tag{2}
\end{equation*}
$$

i.e. $a^{2} \leq 3 b^{2}$ and therefore $|a| \leq|b| \sqrt{3}$.

Conversely we can assume that $|a| \leq|b| \sqrt{3}$. This inequality implies that there exist real numbers x_{1}, x_{2}, x_{3} fulfilling the given system of equations (by the inequality (2)) and the proof is finished.

A-T-2

Using the AM-GM inequality for six positive numbers $\frac{x^{3}}{y^{3}}, \frac{x^{3}}{y^{3}}, \frac{x^{3}}{y^{3}}, \frac{y^{3}}{z^{3}}$, $\frac{y^{3}}{z^{3}}, \frac{z^{3}}{u^{3}}$ we have

$$
\frac{1}{6}\left(3 \cdot \frac{x^{3}}{y^{3}}+2 \cdot \frac{y^{3}}{z^{3}}+\frac{z^{3}}{u^{3}}\right) \geq \sqrt[6]{\frac{x^{9}}{y^{3} z^{3} u^{3}}}=\sqrt[6]{x^{12}}=x^{2}
$$

Cyclically we also obtain

$$
\begin{aligned}
& \frac{1}{6}\left(3 \cdot \frac{y^{3}}{z^{3}}+2 \cdot \frac{z^{3}}{u^{3}}+\frac{u^{3}}{x^{3}}\right) \geq y^{2}, \\
& \frac{1}{6}\left(3 \cdot \frac{z^{3}}{u^{3}}+2 \cdot \frac{u^{3}}{x^{3}}+\frac{x^{3}}{y^{3}}\right) \geq z^{2}, \\
& \frac{1}{6}\left(3 \cdot \frac{u^{3}}{x^{3}}+2 \cdot \frac{x^{3}}{y^{3}}+\frac{y^{3}}{z^{3}}\right) \geq u^{2} .
\end{aligned}
$$

Adding up all four inequalities we obtain the required inequality.
Remark: For the proof we can also use the rearrangement inequality for the quadruples

$$
\left(\sqrt{\frac{x^{3}}{y^{3}}}, \sqrt{\frac{y^{3}}{z^{3}}}, \sqrt{\frac{z^{3}}{u^{3}}}, \sqrt{\frac{u^{3}}{x^{3}}}\right),\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{u}, \frac{u}{x}\right),\left(\sqrt{\frac{x}{y}}, \sqrt{\frac{y}{z}}, \sqrt{\frac{z}{u}}, \sqrt{\frac{u}{x}}\right) .
$$

A-T-3

We can prove by induction that there in fact exists a unique n-digit Graz number for any positive integer n. Obviously only 2 is a 1 -digit Graz number, as 1 is not divisible by 2^{1}, but 2 is. We can therefore assume that there exists a unique k-digit Graz number g for some $k \geq 1$. Since g is divisible by 2^{k}, either $g \equiv 0\left(\bmod 2^{k+1}\right)$ or $g \equiv 2^{k}$ $\left(\bmod 2^{k+1}\right)$ must hold. Since $10^{k} \equiv 2^{k}\left(\bmod 2^{k+1}\right)$ and $2 \cdot 10^{k} \equiv 0$ $\left(\bmod 2^{k+1}\right)$, we have either $10^{k}+g \equiv 0\left(\bmod 2^{k+1}\right)$ or $2 \cdot 10^{k}+g \equiv 0$ $\left(\bmod 2^{k+1}\right)$, and therefore the unique existence of an $n-1$-digit Graz number.

Now that we know this, it is easy to complete the solution. Since 112 is the 3 -digit Graz number, and $112=16 \cdot 7$ is divisible by 16 , 2112 is the 4 -digit Graz number. Since $2112=32 \cdot 66$ is divisible by $2^{5}=32,22112$ is the 5 -digit Graz number, and the solution is complete.

Category B (Individual Competition)

B-I-1

a) The given expression can be factorized by the following way

$$
\begin{gathered}
n^{4}+2 n^{3}+2 n^{2}+2 n+1=\left(n^{4}+2 n^{3}+n^{2}\right)+\left(n^{2}+2 n+1\right)= \\
=n^{2}(n+1)^{2}+(n+1)^{2}=\left(n^{2}+1\right)(n+1)^{2} .
\end{gathered}
$$

Since $2 \leq n^{2}+1<(n+1)^{2}$ for each positive integer n, the given expression is a product of two positive integers which are greater than or equal to 2. It therefore follows that the given expression is always a composite number.
b) Similarly to case a), we have

$$
n^{4}+2 n^{3}+3 n^{2}+2 n+1=\left(n^{2}+n+1\right)^{2} .
$$

The given expression is the square of a positive integer which is greater than or equal to 3 and therefore there cannot exist a positive integer n such that the given expression is a prime.

B-I-2

Let D be the point of intersection of the common internal tangent of circles c_{1} and c_{2} in C with tangent t. Since

$$
|A D|=|C D|=|B D|
$$

we can see that D is the midpoint of the segment $A B$ and simultaneously the center of the Thales circle with diameter $A B$ passing through C. $A B C$ is therefore a right-angled triangle with hypotenuse $A B$.

It is easy to compute that the length of the hypotenuse $A B$ is $2 \sqrt{r_{1} r_{2}}$. Now we can compute the lengths of both legs of the triangle $A B C$. Using the Pythagorean theorem in the triangle $A D S_{1}$ we have

$$
\left|S_{1} D\right|=\sqrt{r_{1}\left(r_{1}+r_{2}\right)} .
$$

Let E be the midpoint of the segment $A C$. Using the similarity of right-angled triangles $S_{1} D A$ and $A D E$ we have

$$
\frac{|A E|}{\sqrt{r_{1} r_{2}}}=\frac{r_{1}}{\sqrt{r_{1}\left(r_{1}+r_{2}\right)}} .
$$

Thus

$$
|A C|=2 \cdot|A E|=2 r_{1} \sqrt{\frac{r_{1} r_{2}}{r_{1}\left(r_{1}+r_{2}\right)}}
$$

and analogously

$$
|B C|=2 r_{2} \sqrt{\frac{r_{1} r_{2}}{r_{2}\left(r_{1}+r_{2}\right)}} .
$$

Conclusion. In summary, we have obtained

$$
|A B|=2 \sqrt{r_{1} r_{2}}, \quad|A C|=2 r_{1} \sqrt{\frac{r_{1} r_{2}}{r_{1}\left(r_{1}+r_{2}\right)}},
$$

and

$$
|B C|=2 r_{2} \sqrt{\frac{r_{1} r_{2}}{r_{2}\left(r_{1}+r_{2}\right)}} .
$$

B-I-3

Write the number n as

$$
n=10^{k} a_{k}+10^{k-1} a_{k-1}+\ldots+10 a_{1}+a_{0}
$$

where $a_{k}, a_{k-1}, \ldots, a_{0}$ are all the digits of n. Thus

$$
\begin{aligned}
n-s_{n} & =10^{k-1} a_{k-1}+\ldots+10 a_{1}+a_{0}-\left(a_{k}+a_{k-1}+\ldots+a_{0}\right)= \\
& =\left(10^{k}-1\right) a_{k}+\left(10^{k-1}-1\right) a_{k-1}+\ldots+(10-1) a_{1} .
\end{aligned}
$$

Note that

$$
10^{m}-1=(10-1)\left(10^{m-1}+10^{m-2}+\ldots+10^{2}+10^{1}+1\right)
$$

so the numbers $10^{m}-1$ are divisible by 9 for all positive integers m. This implies that the number $n-s_{n}$ is divisible by 9 and so by 3. Hence we get that both n as well as s_{n} give the same remainder when divided by 3 .

One can easily show that the product of two integers, which give the same remainder when divided by 3 , can never give the remainder 2 . In fact, for arbitrary integers p and q we have

$$
\begin{aligned}
(3 p)(3 q) & =3(3 p q) \\
(3 p+1)(3 q+1) & =3(3 p q+p+q)+1, \\
(3 p+2)(3 q+2) & =3(3 p q+2 p+2 q+1)+1 .
\end{aligned}
$$

Therefore no integer of the form $3 k+2$ can be represented as the product of n and s_{n}. This proves that there are infinitely many integers with the desired property.

Another solution. We know that n is divisible by 3 if and only if s_{n} is divisible by 3 as well. Let a be a positive integer not divisible by 3 (there exist infinitely many such integers). If the number $3 a$ can be expressed as the product $n \cdot s_{n}$, one of the factors n or s_{n} is divisible by 3 , and so the second one is divisible by 3 too and the product $n \cdot s_{n}$ is divisible by 9 . It follows that a is divisible by 3 , which is a contradiction. It follows that the number $3 a$ cannot be expressed in the form $n \cdot s_{n}$.

B-I-4

A possible onesy number divisible by seven is given by $111111=$ $111 \cdot 1001=111 \cdot 7 \cdot 11 \cdot 13$.

In order to see that there always exists a onesy multiple of any sevensy number k, note that there exist an infinite number of onesy numbers. By the Dirichlet principle, there must therefore exist two different onesy numbers $m_{1}>m_{2}$ with $m_{1} \equiv m_{2} \quad(\bmod k)$. It therefore follows that $m_{1}-m_{2}$ is divisible by k. The number $m_{1}-m_{2}$ can be written as $m_{1}-m_{2}=m \cdot 10^{r}$, where m is also a onesy number. Since k is certainly not divible by 2 or 5 , it follows that m must also be divisible by k, and the proof is complete.

Category B (Team Competition)

B-T-1

Since p is tangent to the circle $k,|\angle V A B|=|\angle V C A|$ must hold. Since the line $K L$ is the angle bisector of the angle $A V C$ we get

$$
\begin{gathered}
|\angle A K L|=|\angle V A K|+|\angle A V K|=|\angle V A B|+|\angle A V K|= \\
=|\angle V C A|+|\angle C V L|=|\angle V C L|+|\angle C V L|=|\angle A L V|=|\angle A L K| .
\end{gathered}
$$

This means that $A K L$ is an isosceles triangle with the base $K L$, which completes the proof.

B-T-2

We can rewrite the given equation in the form

$$
x y-3 x-2 y+6=6, \quad \text { i.e. } \quad(x-2)(y-3)=6 \text {. }
$$

The integer 6 can be factored as the product of two integers as follows:
$6=1 \cdot 6=6 \cdot 1=2 \cdot 3=3 \cdot 2=(-1) \cdot(-6)=(-6) \cdot(-1)=(-2) \cdot(-3)=(-3) \cdot(-2)$.
Therefore we have to discuss eight cases in the following table.

$x-2$	1	6	2	3	-1	-6	-2	-3
$y-3$	6	1	3	2	-6	-1	-3	-2
x	3	8	4	5	1	-4	0	-1
y	9	4	6	5	-3	2	0	1

Since $x \neq 0$ and $y \neq 0$, the given equation has exactly seven solutions, namely:

$$
(x, y) \in\{(3 ; 9),(8 ; 4),(4 ; 6),(5 ; 5),(1 ;-3),(-4 ; 2),(-1 ; 1)\} .
$$

B-T-3

It is perhaps easiest to first note that there can be no real number ℓ such that $f(\ell)<0$ holds. If this were the case, we would have $0>f(\ell)=f\left(\frac{\ell}{2}+\frac{\ell}{2}\right)=f\left(\frac{\ell}{2}\right)^{2}$, which is not possible. This completes the proof of the part $b)$.

We now note that $f(m)=f(m+0)=f(m) \cdot f(0)$ implies $f(0)=1$ and $1=f(0)=f(-m+m)=f(-m) \cdot f(m)$ implies $f(-m)=\frac{1}{f(m)}$. If $f(m)=f(n)$ for some $m>n$, we have $f(m-n)=f(m) \cdot f(-n)=1=f(0)$, and therefore $f(x)=1$ for any rational multiple of $m-n$, which is clearly not possible if $f(0)=1$ and $f(8)>1$.

Since $6561=f(8)=f(4)^{2}$, we have $f(4)=81$, and similarly $f(2)=$ 9 and $f(1)=3$. We therefore have the unique value of $f(-1)=\frac{1}{3}$.

Category C (Individual Competition)

C-I-1

Let S and T denote the midpoints of the sides $A B, C D$ of the given parallelogram respectively, and $2 r$ their lengths (see the picture). Since the points D and T lie on the Thales circle with diameter $A B$, the equalities

$$
|S A|=|S B|=|S T|=|A D|=|B C|=r
$$

hold. Further, it is easy to see that the chords $A B$ and $D T$ of the circle c are parallel.

The quadrilateral $A B T D$ is therefore an isosceles trapezoid with bases $A B, D T$ and with $|A D|=|B T|=r$. Therefore $S B T$ is an equilateral triangle with sides of the length r which yields

$$
|\angle S B T|=|\angle A B T|=60^{\circ} .
$$

Similarly we can prove that $B C T$ is also an equilateral triangle with sides of the length r, and thus $|\angle A B C|=120^{\circ}$.

C-I-2

For $n=1$ and $n=2$ we have

$$
10^{1}=1^{2}+3^{2} \quad \text { and } \quad 10^{2}=6^{2}+8^{2} .
$$

Now, observe that in case, if n is a positive odd number, that is, if $n=2 k-1$ with $k>0$, then

$$
10^{n}=10^{n-1} \cdot 10=10^{2 k-2} \cdot\left(1^{2}+3^{2}\right)=\left(10^{k-1}\right)^{2}+\left(3 \cdot 10^{k-1}\right)^{2}
$$

and if $n=2 k$ with $k>0$ is a positive even number, then we have

$$
10^{n}=10^{n-2} \cdot 10^{2}=10^{2 k-2} \cdot\left(6^{2}+8^{2}\right)=\left(10^{k-1}\right)^{2}+\left(3 \cdot 10^{k-1}\right)^{2} .
$$

This proves our assumption for every positive integer n.

C-I-3

If the train is travelling at $v \mathrm{~km} / \mathrm{h}$, we know that it is travelling at $\frac{v}{3,6} \mathrm{~m} / \mathrm{sec}$. This means that it crosses a total of $\frac{v}{3,6}: 15=\frac{v}{54}$ stretches of 15 m track each second, or exactly v such stretches of 15 m track in 54 seconds. Joe must therefore count for exactly 54 seconds.

C-I-4

A three digit number can be written in the form $100 a+10 b+c$. The sum of the number's digits is $a+b+c$, and any number with the required property must therefore also have the property

$$
100 a+10 b+c=34(a+b+c) \Longleftrightarrow 66 a-33 c=24 b .
$$

Dividing by 3 , this is equivalent to $11(2 a-c)=8 b$. Since the left side of this equation is divisible by 11 , and no single digit positive number can be divisible by 11, it follows that b must be equal to 0 . In this case, the property is equivalent to $2 a=c$, and the numbers fulfilling the requirements are therefore 102, 204, 306 and 408.

Category C (Team Competition)

C-T-1

Let F be the foot of C on $A B$. In the triangle $A D E$, it is easy to calculate the length of $|D E|=6$. Right-angled triangles $A D E$ and $A C F$ are similar since they have a common angle in A, and since $|A C|=20=2 \cdot|A D|$, we have $|C F|=2 \cdot|D E|=12$ and $|A F|=2 \cdot|A E|=$ 16. In the right-angled triangle $C F B$ we therefore have the sides $|F C|=12$ and $|F B|=|A B|-|A F|=21-16=5$, and therefore the hypotenuse $|B C|=\sqrt{5^{2}+12^{2}}=13$.

C-T-2

a) $777=7 \cdot 111=7 \cdot 37 \cdot 3$.
b) $333333=333 \cdot 1001=333 \cdot 7 \cdot 11 \cdot 13$.
c) $555555=555 \cdot 7 \cdot 11 \cdot 13$.
d) The last digit of any number divisible by 5 is always either 0 or 5 . Any number that is divisible by 5 can therefore not be written using only the digit 7.

C-T-3

Let F_{1} and F_{2} be the feet of Q_{1} and Q_{2} on $M_{1} M_{2}$ respectively, and denote the distance between M_{1} and M_{2} as d. Right-angled triangles $M_{1} M_{2} P_{2}$ and $M_{1} Q_{1} F_{1}$ are similar, since they have a common angle in M_{1}. It therefore follows that

$$
\left|Q_{1} F_{1}\right|:\left|M_{1} Q_{1}\right|=\left|M_{2} P_{2}\right|:\left|M_{1} M_{2}\right|
$$

holds which is equivalent to $\left|Q_{1} F_{1}\right|: r_{1}=r_{2}: d$ or $\left|Q_{1} F_{1}\right|=r_{1} r_{2} / d$. By completely analogous calculation with reversed roles of the circles, we also obtain $\left|Q_{2} F_{2}\right|=r_{1} r_{2} / d$, and since Q_{1} and Q_{2} are equidistant from $M_{1} M_{2}$, it follows that the lines $M_{1} M_{2}$ and $Q_{1} Q_{2}$ are parallel as claimed.

Results

Category A (Individual Competition)

Rank	Name	School	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Σ						
1. Bernd Prach	Graz Kepler	8	8	8	8	$\mathbf{3 2}$
2. Łukasz Ławniczak	I.LO Chorzów	8	7	8	8	$\mathbf{3 1}$
3. Lukáš Knob	GJŠ Přerov	8	3	8	8	$\mathbf{2 7}$
4. Jarosław Socha	I.LO Chorzów	8	2	8	8	$\mathbf{2 6}$
5. Clemens Andritsch	Graz Kepler	7	2	8	8	$\mathbf{2 5}$
5. Petr Vincena	GJŠ Přerov	8	1	8	8	$\mathbf{2 5}$
7. Petr Vaněk	GMK Bílovec	7	2	7	8	$\mathbf{2 4}$
8. Markéta Calábková	GJŠ Přerov	4	2	8	8	$\mathbf{2 2}$
9. Marian Poljak	GJŠ Přerov	8	1	3	8	$\mathbf{2 0}$
10. Jan Šarman	GMK Bílovec	0	2	8	8	$\mathbf{1 8}$
11. Artur Minorczyk	I.LO Chorzów	2	3	0	8	$\mathbf{1 3}$
11. Heinz Prach	Graz Kepler	3	2	0	8	$\mathbf{1 3}$
13. Jan Krejčí	GMK Bílovec	4	2	0	0	$\mathbf{6}$
14. Michal Šri̊tek	GMK Bílovec	1	4	0	0	$\mathbf{5}$
15. Benjamin von Berg	Graz All-Stars	2	2	0	0	$\mathbf{4}$
16. Marek Grabowski	I.LO Chorzów	2	0	0	0	$\mathbf{2}$
16. Hannah Lichtenegger	Graz All-Stars	2	0	0	0	$\mathbf{2}$
16. Viet Anh Nguyen	Graz All-Stars	1	1	0	0	$\mathbf{2}$
16. Andrea Triebl	Graz All-Stars	2	0	0	0	$\mathbf{2}$
20. Martina Svibic	Graz Kepler	0	0	0	0	$\mathbf{0}$

Category B (Individual Competition)

Rank	Same	School	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$

Category C (Individual Competition)

Rank	Name	School	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Σ						
1. Marcin Socha	I.LO Chorzów	8	8	8	8	$\mathbf{3 2}$
1. Marcin Sztuka	I.LO Chorzów	8	8	8	8	$\mathbf{3 2}$
1. Karol Szydlik	I.LO Chorzów	8	8	8	8	$\mathbf{3 2}$
4. Jan Równicki	I.LO Chorzów	8	8	7	8	$\mathbf{3 1}$
5. Bára Tížková	GMK Bílovec	8	6	8	8	$\mathbf{3 0}$
6. Konstantin Andritsch	Graz Kepler	8	4	7	8	$\mathbf{2 7}$
7. Daniel Horiatakis	Graz Kepler	8	8	6	4	$\mathbf{2 6}$
8. Anežka Malčíková	GMK Bílovec	0	7	8	8	$\mathbf{2 3}$
9. Zdeněk Kroča	GJŠ Přerov	0	0	8	7	$\mathbf{1 5}$
10. Karolína Vojkůvková	GMK Bílovec	4	7	0	3	$\mathbf{1 4}$
11. Berenika Čermáková	GMK Bílovec	2	0	0	8	$\mathbf{1 0}$
12. Denisa Chytilová	GJŠ Přerov	0	6	0	3	$\mathbf{9}$
13. Alexander Kropiunig	Graz All-Stars	0	0	1	7	$\mathbf{8}$
14. Vinzenz Holzner	Graz Kepler	2	0	1	3	$\mathbf{6}$
15. Christian Thallinger	Graz All-Stars	0	0	1	3	$\mathbf{4}$
16. Lukáš Kremel	GJŠ Přerov	0	0	0	3	$\mathbf{3}$
17. Verena Haas	Graz Kepler	0	0	1	0	$\mathbf{1}$
17. Jiří Hanák	GJŠ Přerov	1	0	0	0	$\mathbf{1}$
17. Anja Zotter	Graz All-Stars	0	0	0	1	$\mathbf{1}$
20. Regina Salloker	Graz All-Stars	0	0	0	0	$\mathbf{0}$

Category A (Team Competition)

Rank \quad School	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Σ
1. Graz Kepler	8	8	8	$\mathbf{2 4}$
2. GJŠ Přerov	7	1	8	$\mathbf{1 6}$
3. I.LO Chorzów	8	0	7	$\mathbf{1 5}$
4. Graz All-Stars	6	0	8	$\mathbf{1 4}$
5. GMK Bílovec	0	0	2	$\mathbf{2}$

Category B (Team Competition)

Rank \quad School	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Σ
1. Graz Kepler	8	8	0	$\mathbf{1 6}$
2. GJŠ Přerov	0	5	4	$\mathbf{9}$
3. GMK Bílovec	0	8	0	$\mathbf{8}$
4. Graz All-Stars	0	6	0	$\mathbf{6}$
4. I.LO Chorzów	0	2	4	$\mathbf{6}$

Category C (Team Competition)

Rank \quad School	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	\sum
1. I.LO Chorzów	8	8	8	$\mathbf{2 4}$
2. Graz All-Stars	4	7	0	$\mathbf{1 1}$
3. GMK Bílovec	1	8	0	$\mathbf{9}$
3. GJŠ Přerov	1	8	0	$\mathbf{9}$
3. Graz Kepler	1	8	0	$\mathbf{9}$

RNDr. Jaroslav Švrček, CSc. RNDr. Pavel Calábek, Ph.D.
Dr. Robert Geretschläger
Dr. Józef Kalinowski
Dr. Jacek Uryga

Mathematical Duel '13

Určeno pro posluchače matematických oborů
Přírodovědecké fakulty UP v Olomouci
a talentované žáky stř̌edních a základních škol České republiky.
Výkonný redaktor prof. RNDr. Tomáš Opatrný, Dr.
Odpovědná redaktorka Mgr. Jana Kreiselová
Technické zpracování RNDr. Pavel Calábek, Ph.D.
Publikace neprošla ve vydavatelství redakční a jazykovou úpravou.
Vydala a vytiskla Univerzita Palackého v Olomouci
Křížkovského 8, 77147 Olomouc
www.upol.cz/vup
e-mail: vup@upol.cz
Olomouc 2013

1. vydání

Neprodejné
ISBN 978-80-244-3465-0

