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Preface

The 23rd Mathematical Duel was held in Bielsko-Biała from
11th till 15th March 2015. It was the first of three competitions
planned as part of the Duel Plus project, which is entirely financed
by the Erasmus Plus programme. The students from three age
groups—Category A (age 17–19), Category B (age 15–17), Category
C (age 13–15)—took part in individual and team competition. The
teams came from Austrian, Czech and Polish schools, namely Bun-
desrealgymnasium Kepler in Graz, Gymnázium Mikuláše Koperní-
ka in Bílovec, Gymnázium Jakuba Škody in Přerov, V Liceum Ogól-
nokształcące in Bielsko-Biała, Akademicki Zespół Szkół Ogólnoksz-
tałcących in Chorzów.

Individual competition started on 12th March at 9 a.m. The
students in each age group were allowed two hours and thirty min-
utes to solve four problems (they could achieve maximum score of
8 points for each problem). Since all the problems were formulated
in English, the teachers in charge of their teams helped them un-
derstand the content. The students could provide solutions either in
their native languages or in English.

The second part of the Duel, i.e. team competition started af-
ter coffee and snack break. The participating schools were allowed
to send 12 persons—four persons for each age group. Thus, four
students representing the same school and age group could join one
team. The teams were told to solve three problems within 100 min-
utes.

This booklet contains all problems with solutions and results
of the 23rd Mathematical Duel from the year 2015.

Authors
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Problems



Category A (Individual Competition)

A–I–1
Find all pairs (a, b) of real numbers such that the roots of the cubic
equation

x3 + ax2 + bx + ab = 0

are the numbers −a, −b and −ab.

Jaroslav Švrček

A–I–2
Prove that for any arbitrary positive integer n there exists a perfect
square such that sum of its digits is equal to n2.

Jacek Uryga

A–I–3
Let u and v be the distances of an arbitrary point of the side AB of
the acute-angled triangle ABC to its sides AC and BC. Furthermore
let ha, hb be the lengths of the altitudes from its vertices A and B,
respectively. Prove that the inequalities

min{ha, hb} ≤ u + v ≤ max{ha, hb}

hold.

Józef Kalinowski

A–I–4
The positive integers k, l, m, n fulfil the equation

k2l2
− m2n2 = 2015 + l2m2

− k2n2.

Find all possible values of k + l + m + n.

Gottfried Perz
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Category A (Team Competition)

A–T–1
Determine all pairs (x, y) of integers fulfilling the equation

x2
− 3x − 4xy − 2y + 4y2 + 4 = 0.

Pavel Calábek

A–T–2
We are given a triangle ABC in the plane. Prove that for any triple
u, v, w of positive real numbers there exists a point P inside the
triangle ABC such that

SABP : SBCP : SCAP = u : v : w.

[Remark. SXYZ denotes the area of a triangle XYZ.]

Jacek Uryga

A–T–3
As shown in the figure, a circle is surrounded by six touching circles
of the same size.

a b

c

de

f m

A real number a, b, c, d, e, f or m is written in the interior of each
circle. It is known that each of these numbers is equal to the product
of all numbers in the interiors of the touching circles. Determine all
possible values of m and prove that no other value is possible.

Robert Geretschläger
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Category B (Individual Competition)

B–I–1
How many triples (a, b, c) of positive integers with

abc = 45 000

exist?

Józef Kalinowski

B–I–2
Let ABC be a triangle with right angle at the vertex C. Let ACP
and BCQ be right-angled isosceles triangles external to ABC with
right angles at P and Q, respectively. Furthermore let F be the foot
of the altitude from C to AB and D, E be points of intersection of the
line AC with PF and the line BC with QF, respectively. Prove that
|DC| = |EC|.

Gottfried Perz

B–I–3
Let p, q, r, s be non-negative real numbers with p ≤ q ≤ r ≤ s. Prove
that the inequality

p + q + r + s
4

≥
p + q + r

3

holds. When does equality hold?

Józef Kalinowski

B–I–4
Let ABCD be a circumscribed quadrilateral with right angles at B
and D. Prove that ABCD is a deltoid.

Jaroslav Švrček
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Category B (Team Competition)

B–T–1
Determine all 5-tuples (a, b, c, d, e) of positive integers such that each
of the fractions

a + b
c + d

,
b + c
d + e

,
c + d
e + a

,
d + e
a + b

,
e + a
b + c

is an integer.

Jaroslav Švrček

B–T–2

a) Jacek has four sticks of integer length that he puts on the ta-
ble to form a convex quadrilateral. No matter which three of
the four sticks he chooses, there is never any way he can form
a triangle. What is the smallest possible circumference of the
quadrilateral that Jacek can make?

b) Jozef has six sticks of integer length. He can put them on the
table and form a convex hexagon, but just like Jacek, there is
never any way he can form a triangle with three of his sticks.
What is smallest possible length of the longest of Jozef ’s sticks?

Robert Geretschläger

B–T–3
Determine the number of all six-digit palindromes which are divisi-
ble by seven.

[Remark. The six-digit palindrome is a positive integer which is
written in the form abccba and a ≠ 0, b, c are digits of the decimal
system.]

Pavel Calábek
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Category C (Individual Competition)

C–I–1
Determine all pairs (m, n) of integers satisfying the following equa-
tion

m +
1
n

= n +
1
m

.

Jaroslav Švrček

C–I–2
Let ABC be an acute-angled triangle with integer angles α, β and γ.
We are given that the external angle ε at the vertex A is an integer
multiple of α with ε = kα. Determine all possible values of k.

Robert Geretschläger

C–I–3
Determine all triples (a, b, c) of positive integers such that each of
the fractions

a + b
b + c

,
b + c
c + a

,
c + a
a + b

is an integer.

Jaroslav Švrček

C–I–4
We are given a rectangle ABCD with |AB| = 4 and |6 ABD| = 30◦.
Point E lies on the circumcircle of ABCD with CE ‖ BD. Determine
(with proof) the length of the segment AE.

Robert Geretschläger
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Category C (Team Competition)

C–T–1
Determine the number of all pairs (x, y) of integers for which the
inequality

2|x| + 3|y| < 23

is fulfilled.

Pavel Calábek

C–T–2
We are given the right-angled triangle ABC with legs |AC| = 1 and
|BC| =

√
3. Let us consider two circles with diameters AC and BC.

Calculate the area of the common part of both circles.

Jacek Uryga

C–T–3
A wavy number is a number in which the digits alternately get larger
and smaller (or smaller and larger) when read from left to right. (For
instance, 3629263 and 84759 are wavy numbers but 45632 is not.)

a) Two five-digit wavy numbers m and n are composed of all digits
from 0 to 9. (Note that the first digit of a number cannot be 0.)
Determine the smallest possible value of m + n.

b) Determine the largest possible wavy number in which no digit
occurs twice.

c) Determine a five-digit wavy number that can be expressed in the
form ab + c, where a, b and c are all three-digit wavy numbers.

Robert Geretschläger
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Solutions



Category A (Individual Competition)

A–I–1
Let us suppose that there exist real numbers a, b fulfilling the con-
ditions of the given problem. Using Vièta’s formulas we get

−a2b2 = −ab ⇔ ab(ab − 1) = 0, (1)
ab + a2b + ab2 = b ⇔ ab(1 + a + b) = b, (2)

−a − b − ab = −a ⇔ b(a + 1) = 0, (3)

Further we will consider two different cases for factors on the left
side of (1):

. Let ab = 0. If a = 0, then by (2) and (3) b = 0 also holds. If b = 0,
then similarly by (2) and (3) a can be arbitrary real number. It
means that desired pairs (a, b) of real numbers are (a, 0), where
a is any real number. The corresponding cubic equation is in the
form x3 + ax2 = 0, which has three real roots −a, 0 and 0.

. Let ab = 1. Since b ≠ 0, then a = −1 must hold by (3). From
the initial condition ab = 1 we further have b = −1. It is easy to
check, that the pair (a, b) = (−1; −1) of real numbers also satisfies
the relation (2). In this case we will obtain the cubic equation
x3 − x2 − x + 1 = 0, which has three real roots −1, −1 and 1.

Conclusion. The solutions of the given problem are the following
pairs of real numbers: (a, b) = (a, 0), where a is any real number, and
also (a, b) = (−1; −1).

A–I–2
Let us take an arbitrary increasing sequence p1, p2, . . . , pn of n > 0
positive integers that satisfies an additional condition

pk > 2pk−1 for every 1 < k ≤ n.

We show that the digit sum of the square number

N =
(
10p1 + 10p2 + ... + 10pn

)2
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is equal to n2.
First note that

N =
n

∑
i,j=1

10pi+pj =
n

∑
i=1

102pi + ∑
1≤i<j≤n

2 ⋅ 10pi+pj .

Every term in both sums is either an integer of the form 100 . . . 0 or
an integer of the form 200 . . . 0. The number of 0’s at the end of every
integer is equal to the exponent of the power of 10 in the respective
term.

Note that each exponent in both sums can be expressed as pi+pj,
with pi ≤ pj (in case pi = pj we have pi + pj = 2pi). It is easy to see
that no two of them are equal. Indeed, taking two such exponents
pi1 + pj1 , pi2 + pj2 we can assume that

a) j1 < j2,
b) i1 < i2 and j1 = j2.

In the case

a) we have pi1 + pj1 ≤ 2pj1 < pj2 < pi2 + pj2 ,
b) we obviously have pi1 + pj1 < pi2 + pj2 .

The first sum has n terms and the second one has n(n − 1)/2
terms. Thus the number N consists of n one’s as well as n(n − 1)/2
two’s and zero’s as other digits. So the digit sum of N is equal to
n + n(n − 1) = n2.

Another solution. From the following equalities

(9m)2 = 9(9m2),

(9m + 2)2 = 9(9m2 + 4m) + 4,

(9m + 4)2 = 9(9m2 + 8m + 1) + 7,

(9m + 6)2 = 9(9m2 + 12m + 4),

(9m + 8)2 = 9(9m2 + 16m + 7) + 1,

(9m + 1)2 = 9(9m2 + 2m) + 1,

(9m + 3)2 = 9(9m2 + 6m + 1),

(9m + 5)2 = 9(9m2 + 10m + 2) + 7,

(9m + 7)2 = 9(9m2 + 14m + 5) + 4,

results that for every integer n the perfect square n2 can be ex-
pressed as 9k, 9k + 1, 9k + 4 or 9k + 7 with k as an integer.

15



Let us observe that for every k > 0 the digit sums of the squares

(10k
− 1)2 = 102k

− 2 ⋅ 10k + 1 = 99 . . . 9︸ ︷︷ ︸
k−1 digits

8 00. . . 0︸ ︷︷ ︸
k−1 digits

1

(10k
− 2)2 = 102k

− 4 ⋅ 10k + 4 = 99 . . . 9︸ ︷︷ ︸
k−1 digits

6 00. . . 0︸ ︷︷ ︸
k−1 digits

4

(10k
− 3)2 = 102k

− 6 ⋅ 10k + 9 = 99 . . . 9︸ ︷︷ ︸
k−1 digits

4 00. . . 0︸ ︷︷ ︸
k−1 digits

9

(10k+1
− 5)2 = 102k+2

− 10k+2 + 25 = 99 . . . 9︸ ︷︷ ︸
k digits

00. . . 0︸ ︷︷ ︸
k digits

25

are equal to 9k, 9k + 1, 9k + 4 and 9k + 7, respectively. This proves
our assertion for n > 2. The cases n = 1, 2 are obvious.

A–I–3
Let P be an arbitrary point inside the segment AB. Let point G ∈ BC
is such that PG ⊥ BC and point D ∈ AC is such that PD ⊥ AC. Then
u = |PD| and v = |PG|.

A B

C

E

GD

F

P

Let AE and BF be altitudes of the triangle ABC. Then

2SABC = |BC| ⋅ |AE| = |AC| ⋅ |BF|,

where SABC denotes the area of the triangle ABC.
Dividing the triangle ABC into two triangles APC and PBC we

obtain
2SABC = |AC| ⋅ |PD| + |BC| ⋅ |PG|.
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Then the equality

|BC| ⋅ |AE| = |AC| ⋅ |PD| + |BC| ⋅ |PG| = |AC| ⋅ |BF|

holds.
Let us consider two possible cases:

a) |AC| ≤ |BC|. Then by the above equality we have

|BC| ⋅ |AE| = |AC| ⋅ |PD| + |BC| ⋅ |PG| ≤ |BC| ⋅ |PD| + |BC| ⋅ |PG|,

whence |AE| ≤ |PD| + |PG|. Also by the equality in the case we
have

|AC| ⋅ |BF| = |AC| ⋅ |PD| + |BC| ⋅ |PG| ≥ |AC| ⋅ |PD| + |AC| ⋅ |PG|,

thus |BF| ≥ |PD| + |PG| and therefore

|AE| ≤ |PD| + |PG| ≤ |BF|.

In case a), because |AC| ≤ |BC|, the altitudes AE and FB fulfil
the inequality |FB| ≥ |AE|. Then we have

min{ha, hb} = |AE| and max{ha, hb} = |FB|

and the inequalities hold, as claimed.
b) |AC| ≥ |BC|. In this case the proof is similar.

The proof is complete.

A–I–4
The given equation can be rewritten as

k2(l2 + n2) = 2015 + m2(l2 + n2)
(k2

− m2)(l2 + n2) = 2015

We have 2015 = 5 ⋅ 13 ⋅ 31 with primes 5, 13 and 31 and

5 ≡ 1 (mod 4), 13 ≡ 1 (mod 4), 31 ≡ 3 (mod 4).
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Since the sum of two square numbers is never congruent 3 modulo
4, and l2 + n2 > 1 holds, it follows that l2 + n2 is not a multiple of 31,
and

l2 + n2
∈ {5, 13, 65}.

a) l2 + n2 = 5. The only possible representation of 5 as a sum of
two square numbers is 5 = 12 + 22. It follows immediately that
{l, n} = {1, 2} and l + n = 3. This means that

k2
− m2 = (k + m)(k − m) = 13 ⋅ 31.

Since k + m > k − m we get

k + m = 31, k − m = 13 or k + m = 13 ⋅ 31 = 403, k − m = 1.

In both cases, k and m are positive integers, so (l + n) + (k + m)
can be equal to 3 + 31 = 34 or equal to 3 + 403 = 406.

b) l2 + n2 = 13. It follows that l2 + n2 = 32 + 22, l + n = 5 and,
consequently k2 − m2 = (k + m)(k − m) = 5 ⋅ 31. This implies that

k + m = 31, k − m = 5 or k + m = 5 ⋅ 31 = 155, k − m = 1.

Again, k and n are positive integers, so (l+n)+ (k+m) can attain
the values 5 + 31 = 36 or 5 + 155 = 160.

c) l2 + n2 = 65. We must deal with two subcases: l2 + n2 = 82 + 12 or
l2 + n2 = 72 + 42, so we have l + n = 8 + 1 = 9 or l + n = 7 + 4 = 11.
It follows that k2 − m2 = (k + m)(k − m) = 31 and

k + m = 31, k − m = 1.

Since k and n are positive integers, (l+n)+ (k+m) can attain the
values 9 + 31 = 40 and 11 + 31 = 42.

This means that the set of possible values of k + l + m + n is
{34, 36, 40, 42, 160, 406}.
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Category A (Team Competition)

A–T–1
We can rewrite the equation in the form

(x − 2y)2 = 3x + 2y − 4.

Since both x and y are integers, there exists an integer d such that

x − 2y = d,

3x + 2y − 4 = d2.

Solving this system we obtain

x =
d(d + 1)

4
+ 1,

y =
d(d − 3) + 4

8
.

We check all residues modulo 8 to obtain that x and y are integers iff
d = 8k + 4 (k ∈ Z) or d = 8(k − 1) + 7 = 8k − 1 (k ∈ Z). In the fist case
we have

x = 16k2 + 18k + 6, y = 8k2 + 5k + 1, k ∈ Z, (1)

the second case gives

x = 16k2
− 2k + 1, y = 8k2

− 5k + 1. k ∈ Z, (2)

Conclusion. All integer solutions of the given equation are in
the form (1) or (2).

A–T–2
First, note that if the point D divides a segment AC in ratio u : v,
then for every point P on BD we have

SABP

SBCP
= u : v.
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A

B

C D

P

This results easily from the property that if a : b = c : d, then a : b =
(a + c) : (b + d) = (a − c) : (b − d). Indeed, the triangles ABD and BCD
have a common altitude, as do the triangles ADP and CDP. Thus,
the ratio of their areas is equal to

SABD

SBCD
=

SADP

SCDP
= |AD| : |DC| =

u
v

.

Hence,
SABP

SBCP
=

SABD − SADP

SBCD − SCDP
=

u
v

.

Now, denote the ratio |BP| : |PD| by x : y. We have

SADP

SABP
= y : x and

SCDP

SBCP
= y : x

Now, we compute the ratio

SACP

SBCP
=

SADP + SCDP

SBCP
=

SADP

SBCP
+

SCDP

SBCP
=

SADP

SABP
⋅

SABP

SBCP
+

y
x

=

y
x

⋅
u
v

+
y
x

=
y
x

⋅

(u + v
v

)
.

We want to choose P such that ratio is equal to w : v, so it is
enough to put y = w/v, x = v/(u + v) to achieve the required relation-
ship.
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A–T–3
We first note that m = 0 must hold if any of the numbers are equal
to 0, since m = abcdef . In the following, we can therefore assume
m ≠ 0.

Since a = bfm and b = amc hold, multiplying both equations
yields cf = 1

m2 . Similarly we obtain ad = 1
m2 and be = 1

m2 , and multi-
plying these three equations gives us

m = abcdef =
1

m6 .

We therefore have m7 = 1 ⇐⇒ m = 1, and see that the only possible
values for m are 0 or 1.

Finally, we must note that these values are both indeed possible,
since all circled real numbers can equal 0 or 1, fulfilling the required
properties.

Category B (Individual Competition)

B–I–1
Note that 45 000 = 23 ⋅ 32 ⋅ 54. The positive integer solutions (a, b, c)
of the given equation must be of the form

a = 2α1 ⋅ 3β1 ⋅ 5γ1 ,

b = 2α2 ⋅ 3β2 ⋅ 5γ2 ,

c = 2α3 ⋅ 3β3 ⋅ 5γ3 ,

where exponents αi, βi, γi (i = 1, 2, 3) are non-negative integers ful-
filling the system of equations

α1 + α2 + α3 = 3, (1)
β1 + β2 + β3 = 2, (2)
γ1 + γ2 + γ3 = 4. (3)

The equation (1) is satisfied by triples (α1, α2, α3) from the set
{(3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 1, 0), (1, 2, 0), (2, 0, 1), (1, 0, 2), (0, 1, 2),
(0, 2, 1), (1, 1, 1)}, i.e. 10 triples altogether.

21



The equation (2) is satisfied by triples (β1, β2, β3) from the set
{(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, i.e. 6 triples al-
together.

The last equation (3) is fulfilled by the triples (γ1, γ2, γ3) from
the set {(4, 0, 0), (0, 4, 0), (0, 0, 4), (3, 1, 0), (1, 3, 0), (3, 0, 1), (1, 0, 3),
(0, 1, 3), (0, 3, 1), (2, 2, 0), (2, 0, 2), (0, 2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2)},
i.e. 15 triples altogether.

It follows that the number of all triples (α1, α2, α3), (β1, β2, β3),
(γ1, γ2, γ3) fulfilling (1), (2) and (3) is equal, by the combinatorial prod-
uct principle, to 10 ⋅ 6 ⋅ 15 = 900.

Conclusion. There exist altogether 900 different positive integer so-
lutions (a, b, c) of the given equation.

B–I–2
Since AP and AF are perpendicular to CP and CF, respectively, P
and F are points of the circle k1 with diameter AC. Triangle ACP
is drawn external to ABC, so AFCP is a convex cyclic quadrilateral
with circumcircle k1. Consequently, since ACP is an equilateral right
triangle, we have | 6 CFP| = |6 CAP| = 45◦. Analogously, BQCF is a
cyclic quadrilateral with circumcircle k2, and |6 QFC| = |6 QBC| = 45◦.

A B

C

D

E

F

P

Q

k3

k1

k2

This means that |6 QFP| = | 6 EFD| = 90◦ = |6 DCE|, so CDEF
is also a cyclic quadrilateral with DE as a diagonal. So finally we
have | 6 EDC| = | 6 EFC| = 45◦ = |6 CFD| = | 6 CED|, whence CDE is an
isosceles right triangle, and |DC| = |EC|.
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B–I–3
We can easily rewrite the given inequality in the form

3p + 3q + 3r + 3s − 4p − 4q − 4r ≥ 0,

which is equivalent to the following inequality

3s − p − q − r = (s − p) + (s − q) + (s − r) ≥ 0.

By the assumption we have s − p ≥ 0, s − q ≥ 0 and s − r ≥ 0, the last
inequality is true and the proof is finished.

Equality holds, iff s − p = 0, s − q = 0 and s − r = 0, i.e. iff
0 ≤ p = q = r = s.

B–I–4
Since ABCD is a cimcumscribed quadrilateral with right angles at
the vertices B and D with |AB| = a, |BC| = b, |CD| = c, |DA| = d, then
following equalities hold

a2 + b2 = c2 + d2, (1)
a + c = b + d. (2)

We can rewrite (2) in the form

a − b = d − c

After squaring the last equation and using (1), easy algebraic ma-
nipulation gives us

2ab = 2cd. (3)

Summing up (1) with (3) we consequently get a+b = c+d. Combining
this result with (2) we further get (a = d) ∧ (b = c). It means that
ABCD is a deltoid and the proof is finished.
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Category B (Team Competition)

B–T–1
The following inequalities must necessarily hold for the numerators
and denominators of the five given fractions

a + b ≥ c + d,
b + c ≥ d + e,
c + d ≥ e + a,
d + e ≥ a + b,
e + a ≥ b + c.

Adding up all five inequalities we obtain

a + b + c + d + e ≥ a + b + c + d + e.

Since equality in the last inequality holds, it must also hold in all
five inequalities equalities, i.e.

a + b = c + d, (1)
b + c = d + e, (2)
c + d = e + a, (3)
d + e = a + b, (4)
e + a = b + c. (5)

From (1), (3) and (5) we have a = c = e. From (2) we further get b = d,
and finally (5) implies a = b = c = d = e.

Conclusion. After obligatory checking we can see that all de-
sired 5-tuples (a, b, c, d, e) of positive integers are 5-tuples in the form
(n, n, n, n, n), where n is an arbitrary positive integer.

B–T–2

a) If the sticks are of length 1, 1, 2, 3, there is no way to form a
triangle, since the triangle inequality cannot hold. This yields
a circumference of 7. If the circumference is less than 7, there
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are either 3 sticks of length 1 (yielding an equilateral triangle)
or two of length 2, which can be sides of an isosceles triangle
together with a stick of length 1.

b) If the sticks are of lengths 1, 1, 2, 3, 5 and 8, there is no way
to form a triangle. (The Fibonacci numbers never fulfill the tri-
angle inequalities.) If the longest stick is less than 8 units in
length, the next larger ones must be either 3 and 4 in length
(meaning that they form a triangle with a stick of length 2 or
there are 3 sticks of length 1, forming an equilateral triangle),
or 3 and 3 in length (yielding an isosceles triangle with a stick
of shorter length), or there are again 4 sticks, the sum of whose
lengths is less than 7, which yields a triangle as seen in part a).

B–T–3
We have

abccba = 100001a+10010b+1100c = 7(14286a+1430b+157c)−(a−c).

Such number is divisible by 7 iff (a − c) is divisible by 7. a ≠ 0 and c
are digits, therefore −8 ≤ a − c ≤ 9. This follows (a − c) ∈ {−7, 0, 7}.
For a − c = −7 we have

(a, c) ∈ {(1, 8), (2, 9)},

for a − c = 0 we have

(a, c) ∈ {(1, 1), (2, 2), . . . , (9, 9)}

and finally for a − c = 7 we have

(a, c) ∈ {(7, 0), (8, 1), (9, 2)},

altogether 14 possibilities for (a, c). In all cases b is arbitrary digit,
therefore there exists 14 ⋅ 10 = 140 six-digit palindromes which are
divisible by 7.
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Category C (Individual Competition)

C–I–1
Firstly, we can see that m ≠ 0 ≠ n. Further, we can rewrite the given
equation in the form

(m − n) +
(

1
n

−
1
m

)
= (m − n)

(
1 +

1
mn

)
= 0.

This implies either m − n = 0, i.e. m = n, or 1 + 1
mn = 0, i.e. mn = −1.

Conclusion. The first case gives solutions of the given problem
in the form (m, n) = (n, n), where n is any positive integer. The second
case yields another two solutions, (m, n) = (1; −1) and (m, n) = (−1; 1).

C–I–2
Since the sum of the internal and external angles must be 180◦, we
have α + ε = 180◦. This yields

180◦ = α + kα = (1 + k)α.

We see that 1 + k must be a divisor of 180. The set of all divisors of
180 is

{1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180}.

We note that k = 0 is obviously not possible. k = 1 means α = ε =
90◦, and since the triangle is acute-angled, this is also not possible.
Furthermore, k = 179 yields α = 1◦, and therefore β + γ = 179◦. This
means that one of the angles β or γ is equal to or greater than 90◦,
which is also not possible. These arguments eliminate the values 1, 2
and 180 from the list of possible values of 1 + k. All other values of
1 + k are possible, and the set of all possible values for k is therefore

{2, 3, 4, 5, 8, 9, 11, 14, 17, 19, 29, 35, 44, 59, 89}.
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C–I–3
All desired triples of positive integers a, b, c must necessarily fulfill
the inequalities

a + b ≥ b + c, (1)
b + c ≥ c + a, (2)
c + a ≥ a + b. (3)

From (1)–(3)
b ≥ a ≥ c ≥ b

immediately follows and thus a = b = c.

Conclusion. After obligatory checking we can see that all de-
sired triples (a, b, c) of positive integers are the triples (m, m, m),
where m is any positive integer.

C–I–4
We begin by noting that triangles ABD and BAC are congruent
halves of the rectangle ABCD, and we therefore have

|6 ACB| = |6 ADB| = 180◦ − 90◦ − 30◦ = 60◦.

Since points A, B, C, D, E lie on a common circle, we therefore have
| 6 AEB| = | 6 ADB| = 60◦.

A B

CD

E

Furthermore, we have | 6 CDB| = | 6 ECD| = |6 DBA| = 30◦, and there-
fore |6 ABE| = | 6 ABD| + | 6 DBE| = 30◦ + 30◦ = 60◦. We see that trian-
gle ABE is equilateral, as it has two interior angles of 60◦, and we
therefore have |AE| = |AB| = 4.
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Category C (Team Competition)

C–T–1
The inequality implies |3y| < 23, and thus |y| ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
We discuss all such cases in the following table.

|y| |x| ∈ # of y # of x # of pairs (x, y)

0 {0, 1, 2, . . . , 11} 1 23 23

1 {0, 1, 2, . . . , 9} 2 19 38

2 {0, 1, 2, . . . , 8} 2 17 34

3 {0, 1, 2, . . . , 6} 2 13 26

4 {0, 1, 2, . . . , 5} 2 11 22

5 {0, 1, 2, 3} 2 7 14

6 {0, 1, 2} 2 5 10

7 {0} 2 1 2

Total # of pairs 169

There are 169 pairs of integers satisfying the inequality

2|x| + 3|y| < 23.

C–T–2
By the Pythagorean theorem we can easy calculate the length of the
third side of the triangle ABC. It is equal to 2. We can therefore
state that the triangle ABC is half of an equilateral triangle whose
side is equal to 2. Then the angles 6 ABC and 6 BAC are equal to 30◦
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and 60◦, respectively.

A

B

C

D

F

E
Now, denote by D the foot of the altitude of the triangle ABC

drawn from the vertex C. Since the angles 6 ADC and 6 BDC are both
right angles, the point D, by the converse of the Thales’ theorem, lies
on both circles and so it is the second common point (the first is C).
Denote further E and F as midpoints of AC and BC.

Thus, the common part of the circles is the common part of
two circle sectors contained in the triangle ABC with central an-
gles 6 CED and 6 CFD and radii 1

2 ,
√

3
2 , respectively. By the inscribed

angle theorem we have
| 6 CED| = 2 | 6 CAD| = 120◦, | 6 CFD| = 2 | 6 CBD| = 60◦.

The area S of a common part of the circle sectors can be calculated
by the formula S = SE + SF − SQ, where SE and SF are areas of the
circle sectors with central angles at E and F, respectively, and SQ is
the area of the quadrilateral CEDF.

By the well known formulas for the area of a circle sector, we
have

SE =
120◦

360◦
π

(
1
2

)2

=
1

12
π, SF =

60◦

360◦
π

(√
3

2

)2

=
1
8

π.

The area SQ of quadrilateral CEDF is equal to

SQ = 2SCEF = 2 ⋅
1
4

SABC =
√

3
4

.

Therefore, we have

S =
1
12

π +
1
8

π −

√
3

4
=

5
24

π.
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C–T–3

a) The smallest possible sum is given by the expression

20659 + 14387 = 35046.

b) The largest such number is 9785634120.
c) There are many such combinations. Examples are

120 ⋅ 142 + 231 = 17271 or 101 ⋅ 101 + 101 = 10302.
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Results



Category A (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Marta Mościcka V LO Bielsko-Biała 8 5 8 8 29
2. Wojciech Klemens V LO Bielsko-Biała 3 8 8 8 27
3. Marian Poljak GJŠ Přerov 8 1 8 8 25

Petr Vincena GJŠ Přerov 8 1 8 8 25
5. Jakub Paliga AZSO Chorzów 8 0 8 8 24
6. Jakub Kuklis V LO Bielsko-Biała 3 7 8 5 23
7. Tomáš Kremel GJŠ Přerov 8 0 8 6 22
8. Jan Gocník GJŠ Přerov 8 0 0 4 12
9. Michał Ślusarczyk AZSO Chorzów 3 0 8 0 11

Wojciech Buś V LO Bielsko-Biała 6 3 0 2 11
11. Gerda Prach BRG Kepler 6 0 0 4 10
12. Vladimír Jeřábek GMK Bílovec 8 0 0 1 9
13. Sebastian Borówka AZSO Chorzów 4 0 0 4 8
14. Lucie Holušová GMK Bílovec 4 0 0 2 6
15. Tomáš Moravec GMK Bílovec 0 0 0 4 4
16. Benedikt Andritsch BRG Kepler 3 0 0 0 3
17. Artur Wyciślok AZSO Chorzów 1 0 0 1 2

Martin Ošt’ádal GMK Bílovec 1 0 0 1 2
19. Markus Ruprechter BRG Kepler 0 0 0 1 1
20. Doris Prach BRG Kepler 0 0 0 0 0
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Category B (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Bogna Pawlus V LO Bielsko-Biała 8 8 8 8 32
2. Mikołaj Tomalik V LO Bielsko-Biała 8 0 8 8 24
3. Jiří Nábělek GMK Bílovec 8 0 8 6 22
4. Konstantin Andritsch BRG Kepler 0 8 8 2 18
5. Marcin Socha AZSO Chorzów 0 0 8 8 16

Bára Tížková GMK Bílovec 0 2 6 8 16
7. Jan Równicki AZSO Chorzów 0 8 6 0 14

Łukasz Grzesiek V LO Bielsko-Biała 0 0 6 8 14
9. Damian Wałoszek GMK Bílovec 8 0 2 0 10

Jan Šuta GJŠ Přerov 0 1 8 1 10
11. Denisa Chytilová GJŠ Přerov 0 0 8 1 9

Daniel Horiatakis BRG Kepler 0 1 8 0 9
13. Julie Dostalíková GJŠ Přerov 0 0 8 0 8

Adrian Steinmann BRG Kepler 0 0 8 0 8
Bazyli Polednia V LO Bielsko-Biała 0 0 8 0 8

16. Tereza Špalková GJŠ Přerov 0 0 4 0 4
17. Karol Szydlik AZSO Chorzów 0 0 3 0 3
18. Grzegorz Pielot AZSO Chorzów 0 0 2 0 2

Tomáš Kůřil GMK Bílovec 0 0 2 0 2
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Category C (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Tomáš Křižák GMK Bílovec 4 7 8 8 27
2. Michaela Svatošová GMK Bílovec 2 8 8 8 26
3. Michał Szwej AZSO Chorzów 4 7 8 6 25
4. Jana Pallová GJŠ Přerov 6 0 8 8 22
5. Marcin Traskowski AZSO Chorzów 6 7 8 0 21
6. Minh Nguyen BRG Kepler 2 7 8 0 17
7. Matyáš Florík GMK Bílovec 4 0 4 8 16
8. Jaroslav Hradil GJŠ Přerov 0 1 0 8 9
9. Krzysztof Stefan AZSO Chorzów 2 0 4 0 6

10. Julian Narimany AZSO Chorzów 2 0 2 0 4
Dominik Nagy GMK Bílovec 4 0 0 0 4
Vít Horčička GJŠ Přerov 2 0 2 0 4

13. Jakub Gogela GJŠ Přerov 2 0 0 0 2
Julian Wonisch BRG Kepler 2 0 0 0 2

34



Category A (Team Competition)

Rank School 1 2 3 ∑

1. V LO Bielsko-Biała 4 8 8 20
2. GJŠ Přerov 2 8 8 18
3. BRG Kepler 1 6 8 15
4. AZSO Chorzów 0 7 2 9
5. GMK Bílovec 0 0 6 6

Category B (Team Competition)

Rank School 1 2 3 ∑

1. V LO Bielsko-Biała 8 8 8 24
2. AZSO Chorzów 6 4 8 18

GMK Bílovec 6 4 8 18
4. GJŠ Přerov 6 4 6 16
5. BRG Kepler 6 4 4 14

Category C (Team Competition)

Rank School 1 2 3 ∑

1. GMK Bílovec 8 8 8 24
2. AZSO Chorzów 4 2 8 14
3. GJŠ Přerov 2 0 8 10

BRG Kepler 4 0 6 10
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