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Preface

The 24th Mathematical Duel was held in Ostrava from 12th till
16th March 2016. It was the second of three competitions planned as
part of the Duel Plus project, which is entirely financed by the Eras-
mus Plus programme. The students from three age groups – Cate-
gory A (age 17–19), Category B (age 15–17), Category C (age 13–15)
– took part in individual and team competition. The teams came
from Austrian, Polish and Czech schools, namely Bundesrealgymna-
sium Kepler in Graz, Akademicki Zespół Szkół Ogólnokształcących
in Chorzów, Gymnázium Jakuba Škody in Přerov and Gymnázium
Mikuláše Koperníka in Bílovec.

The individual competition started on 13th March at 9 a.m. The
students in each age group were allowed two hours and thirty min-
utes to solve four problems (they could achieve maximum score of
8 points for each problem). Since all the problems were formulated
in English, the teachers in charge of their teams helped them un-
derstand the content. The students could provide solutions either in
their native languages or in English.

The second part of the Duel, i.e. team competition started af-
ter coffee and snack break. The participating schools were allowed
to send 12 persons – four persons for each age group. Thus, four
students representing the same school and age group could join one
team. The teams were told to solve three problems within 100 min-
utes.

This booklet contains all problems with solutions and results
of the 24th Mathematical Duel from the year 2016.

The authors
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Problems



Category A (Individual Competition)

A–I–1
Find the largest positive integer n with the following property: The
product

(k + 1) ⋅ (k + 2) ⋅ (k + 3) ⋅ . . . ⋅ (k + 2016)

is divisible by 2016n for every positive integer k.

Jaroslav Švrček

A–I–2
In the domain of real numbers, solve the system of equations

x = p2 + y2,

y = q2 + z2,

z = r2 + x2

with non-negative real parameters p, q, r satisfying p + q + r = 3
2 .

Józef Kalinowski

A–I–3
We are given a square ABCD in the plane. Find the locus of ver-
tices P of all right-angled isosceles triangles APQ with the right
angle at P such that the vertex Q lies on the side CD of the given
square.

Jaroslav Švrček

A–I–4
On every square of a 10×10 table sits exactly one flea. At a signal all
fleas jump diagonally over one square onto another square of the ta-
ble. Then, there are some squares with several fleas and some empty
squares. Find the minimum possible number of empty squares.

Pavel Calábek
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Category A (Team Competition)

A–T–1
Prove that for every positive integer n there exists an integer m di-
visible by 5n which consists exclusively of odd digits.

Jacek Uryga

A–T–2
A cube F with edge length 9 is divided into 93 small cubes with edges
of the length 1 by planes parallel to its faces. One small cube is
removed from the center of each of the six faces of the cube F. Let
us denote the resulting solid by G. Is it possible to build the solid G
only from rectangular cuboids with the dimensions 1 × 1 × 3?

Jacek Uryga

A–T–3
Determine all polynomials P(x) with real coefficients such that for
each real number x the equation

P(x2) − 3x3 + 15x2
− 24x + 12 = P(x) P(2x)

holds.

Pavel Calábek
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Category B (Individual Competition)

B–I–1
Let a, b, c be arbitrary real numbers. Prove that the inequality

a2 + 5b2 + 4c2
≥ 4(ab + bc)

holds. When does equality hold?

Robert Geretschläger

B–I–2
Determine in how many ways one can assign numbers of the set
{1, 2, . . . , 8} to the vertices of a cube ABCDEFGH such that the sum
of any two numbers at vertices with a common edge is an odd num-
ber.

Jaroslav Švrček

B–I–3
A circle meets each side of a rectangle at two points. Intersection
points lying on opposite sides are vertices of two trapezoids. Prove
that points of intersection of these two trapezoids lying inside the
rectangle are vertices of a cyclic quadrilateral.

Jacek Uryga

B–I–4
For how many numbers from the set {1, 2, 3, . . . , 2016} is a remain-
der of its square after division by 2016 equal to 1?

Pavel Calábek
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Category B (Team Competition)

B–T–1
Determine all 4-digit palindromic numbers n (i.e. a number that
reads the same from front to back and from back to front), such that
17n is a perfect square.

Robert Geretschläger

B–T–2
A right-angled triangle ABC in the plane is given. Its legs BC and
AC are hypotenuses of two right-angled isosceles triangles BCP and
ACQ erected outside ABC. Let D be the vertex of the right-angled
isosceles triangle ABD with hypotenuse AB erected inside ABC.
Prove that the point D belongs to the line PQ.

Jaroslav Švrček

B–T–3
A set A consists exclusively of positive integers not divisible by 7.
How many elements must the set A at least contain in order to be
sure that there is an non-empty subset of A, such that the sum of
the squares of the elements of this subset is divisible by 7?

Jacek Uryga
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Category C (Individual Competition)

C–I–1
The inequality a2 + 2b2 ≥ pab is known to hold for all real values of
a and b.

a) Determine any value of p, such that this is true and prove why
this is true.

b) Does this inequality hold for all real numbers a, b, provided
p = 2 and p = 3? Why?

Robert Geretschläger, Jaroslav Švrček

C–I–2
Each vertex of a regular hexagon ABCDEF is coloured by one of
three colours (red, white and blue) such that each colour is used
exactly twice. Determine in how many ways we can do this, when
any two adjacent vertices of the hexagon are coloured by distinct
colours.

Jaroslav Švrček

C–I–3
We are given an equilateral triangle ABC in the plane. Let D be an
interior point of the side AC. On the ray BC, beyond the point C, lies
the point E such that |AD| = |CE|. Prove that |BD| = |DE|.

Józef Kalinowski

C–I–4
We are given two positive real numbers x and y. Their arithmetic
mean A = (x+y)/2 and their geometric mean G = √xy are in the ratio
A : G = 5 : 4. Determine the ratio x : y.

Robert Geretschläger
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Category C (Team Competition)

C–T–1
Let a, b, c be arbitrary non-zero real numbers. Let us denote

A =
a2 + b2

c2 , B =
b2 + c2

a2 , C =
c2 + a2

b2

and further P = A ⋅ B ⋅ C and S = A + B + C. Determine all possible
values of the difference P − S.

Józef Kalinowski

C–T–2
We are given two circles c1 and c2 with midpoints M1 and M2, respec-
tively. The radius of c1 is r and the radius of c2 is 2r. Furthermore,
we are given that |M1M2| = r

√
2. Let P be a point on c2 with the

property that the tangents from P to c1 are mutually perpendicular.
Determine the area of the triangle M1M2P in terms of r.

Robert Geretschläger

C–T–3
We are given the interesting number 5040. Like some other num-
bers, this number can be expressed as the product of several con-
secutive integers. (For example, the number 1320 can be expressed
in the form 1320 = 10 ⋅ 11 ⋅ 12 as the product of three consecutive
integers.)

a) Express 5040 as the product of 4 consecutive integers.
b) Express 5040 as the product of 6 consecutive integers.
c) Prove that 5040 cannot be expressed as the product of two con-

secutive integers.

Robert Geretschläger
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Solutions



Category A (Individual Competition)

A–I–1
We can write the number 2 016 in the canonical form (using primes
only) in the form 2 016 = 25 ⋅ 32 ⋅ 7. It is easy to see that every second
factor in the product

(k + 1) ⋅ (k + 2) ⋅ (k + 3) ⋅ . . . ⋅ (k + 2016)

is divisible by 2, similarly every third factor of this product is divisi-
ble by 3 and every seventh factor is divisible by 7.

We find the largest positive integer n7 such that 7n7 is a divisor
of the given product for every positive integer k. Since every seventh
factor of the given product is divisible by 7, we have 2016/7 = 288
numbers divisible at least by 7. Moreover, every 49th factor is di-
visible by 49 = 72. Thus, we altogether have b2016/49c = 41 such
numbers (bxc is the lower integer part of a real number x). Finally,
every 343rd factor is divisible by 343 = 73, i.e. further we have in
this product b2016/343c = 5 such numbers (and 74 > 2016). It follows
n7 = 288 + 41 + 5 = 334. Similarly we find n3 = 1004 and n2 = 2010.

Conclusion. The largest positive integer n satisfying conditions
of the problem is

n = min
{⌊n2

5

⌋
,
⌊n3

2

⌋
, n7

}
= min{402, 502, 334} = 334.

A–I–2
For any non-negative real parameters p, q, r we have (by the QM-AM
inequality)√

p2 + q2 + r2

3
≥

p + q + r
3

⇔ p2 + q2 + r2
≥

(p + q + r)2

3
≥

1
3

⋅
9
4

=
3
4

with equality if and only if p = q = r = 1
2 . Adding all three equations,

we obtain

0 = x2 + y2 + z2
− (x + y + z) + (p2 + q2 + r2) ≥ x2 + y2 + z2

− (x + y + z) + 3
4 =

=
(
x −

1
2

)2 +
(
y −

1
2

)2 +
(
z −

1
2

)2
≥ 0

for p = q = r = 1
2 .
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After checking we see that the triple (x, y, z) = ( 1
2 , 1

2 , 1
2 ) is the

unique solution of the given system of equations.

Conclusion. The system of equations with non-negative real
parameters p, q, r such that p + q + r = 3

2 has the unique solution
x = y = z = 1

2 , for p = q = r = 1
2 only.

A–I–3
Let us consider a right-angled isosceles triangle APQ with the hy-
potenuse AQ such that the vertex P lies in the same half-plane as
the vertex B of the given square with respect to the line AQ. We can
see in the picture that the segment AQ is a diameter of the Thales
circle k, on which lie the points P and D (ADQ and APQ are both
right angles). Thus the points A, P, Q and D lie (in this order) on
the same circle (i.e. the quadrilateral APQD is cyclic). This implies
that we see the side AP of the quadrilateral APQD from the points
Q and D (both points are in the same half-plane with respect to the
line AP) under the same angle, namely 45◦. Therefore, the point P
lies on the segment BS where S is the center of the given square
ABCD (its endpoints B, S are simultaneously boundary positions of
the points Q on the side CD), because the diagonal BD containing
the segment BS holds the angle of the measure 45◦ with all sides of
this square.

A B

CD

S
S′

P

P′

Q

k
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Conversely, it is easy to see, that for every point P of the segment
BS there exists a point Q of the side CD which is a vertex of a right-
angled isosceles triangle APQ with the right angle at P.

Further, let us consider a right-angled isosceles triangle AP′Q
with the hypotenuse AQ such that its vertex P′ lies in the same half-
plane as D with respect to the line AQ. As in the previous case we
can easy to see that AQDP′ is a cyclic quadrilateral with |6 ADP′| =
45◦ and thus the locus of the vertices P′ of all right-angled triangles
is in this case the segment DS′, where S′ is the symmetric point to
the center S of the given square with respect to the closed segments
AD.

Conclusion. The locus of vertices P of all right-angled isosceles
triangles with a right angle at P is the pair of closed segments BS
and DS′.

A–I–4
Let us label the columns of the table from left to right with 1, 2, 3, 4,
1, 2, 3, 4, 1, 2. There are 30 squares in each of the columns 1, 2 and
20 squares in each of the columns 3, 4. The fleas from the columns
1 jump to the columns 3 and from the columns 3 to the columns
1. Therefore there are at least 10 empty squares in the columns 1
after the signal. Similarly there are at least 10 empty squares in the
columns 2. Altogether there are at least 20 empty squares.

1 2 3 4 1 2 3 4 1 2
8 9 10 11 12 13 14 15
7 22 23 24 25 26 27 28
6 21 8 9 10 11 12 13 14 15
5 20 7 22 23 24 25 26 27 28
4 19 6 21 32 33 34 35
3 18 5 20 31 38 39 40
2 17 4 19 30 37 32 33 34 35
1 16 3 18 29 36 31 38 39 40

2 17 30 37
1 16 29 36
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On the other hand, if (in the previous picture) the fleas from the
squares with the same number exchange their positions and fleas
from the empty squares jump to some suitable square, we can see,
that there remains exactly 20 empty squares.

Conclusion. The minimum possible number of empty squares is
therefore 20.

Category A (Team Competition)

A–T–1
We prove a stronger assumption: for every positive integer n there
exists an integer m divisible by 5n which consists exclusively of n
odd digits.

Note first that for every positive integer n and q the numbers
2n + q, 3 ⋅ 2n + q, 5 ⋅ 2n + q, 7 ⋅ 2n + q, 9 ⋅ 2n + q give five different
remainders when divided by 5. Indeed, if two of the remainders
were equal, then the difference of those numbers would be divisible
by 5, which is not possible.

For n = 1 we can choose m = 5. Now suppose, for some n we
have a number m divisible by 5n consisting of n odd digits.

Let us take q = m/5n and choose d ∈ {1, 3, 5, 7, 9} such that such
that 5  d ⋅ 2n + q. So the number

m′ = 5n(d ⋅ 2n + q) = d ⋅ 10n + m

is divisible by 5n+1 and consists of all n odd digits of m and an odd
digit d.

A–T–2
Let us place our cube as shown at the picture. Each of the small
cubes can be uniquely determined by three coordinates [x, y, z] in a
similar manner as points. The cube with vertex at (0, 0, 0) gets co-
ordinates [0, 0, 0] and the cube with vertex (9, 9, 9) gets coordinates
[8, 8, 8]. Let us color each of small cubes with one of three colors
depending of the remainder obtained in division of sum of its coordi-
nates x + y + z by 3.
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y

A cube F consists of the same number of small cubes of each
color.

The cubes removed from F have coordinates [4, 4, 0], [4, 4, 8],
[0, 4, 4], [8, 4, 4], [4, 0, 4], [4, 8, 4] and the remainders obtained divid-
ing these sums by 3 are as follows: 2, 1, 2, 1, 2, 1. So in the solid G
there are more small cubes for which the corresponding remainder
is 0 than these with remainder 1 and 2.

On the other hand each of the rectangular cuboids can only have
three small cubes of three distinct colors. Thus it is not possible to
build G from such cuboids.

A–T–3
It is easy to see that the polynomial P has degree equal to at least 2.

Let k, n be positive integers, n ≥ 2, n > k ≥ 0 and polynomial P
is of the form

P(x) = anxn + akxk + ak−1xk−1 + ak−2xk−2 + . . . + a1x + a0

where ai are real coefficients (an ≠ 0). Then

P(x2) = anx2n + akx2k + ak−1x2(k−1) + ak−2x2(k−2) + . . . + a1x2 + a0,

P(2x) = 2nanxn + 2kakxk + 2k−1ak−1xk−1 + 2k−2ak−2xk−2 + . . . + 2a1x + a0.
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The highest power of x on the left side of the equation is x2n, the
second highest power is xmax{2k,3}. The highest power of x on the
right side is x2n, the second highest is xn+k. Since n + k > 2k we can
see that for ak ≠ 0, n+k = 3, and therefore n = 2, k = 1 or n = 3, k = 0.

Comparing coefficients at x2n on the both sides we further obtain
an = 2na2

n and from an ≠ 0 it follows that an = 1/2n must hold.

In the case n = 3 and k = 0 (and ak = 0) the desired polyno-
mial P(x) is in the form P(x) = 1

8 x3 + A, where A is a real number.
Substituting in the original equation we have

1
8 x6 + A − 3x3 + 15x2

− 24x + 12 = ( 1
8 x3 + A)(x3 + A) = 1

8 x6 + 9
8 Ax3 + A2.

Comparing coefficients at x2 we obtain 15 = 0, so this case is impos-
sible.

In the case n = 2 nad k = 1 the desired polynomial P(x) is in the
form P(x) = 1

4 x2 + Ax + B, where A and B are real numbers. Substi-
tuting to the original equation we have

1
4 x4 + Ax2 + B − 3x3 + 15x2

− 24x + 12 = ( 1
4 x2 + Ax + B)(x2 + 2Ax + B)

= 1
4 x4 + 3

2 Ax3 + ( 5
4 B + 2A2)x2 + 3ABx + B2.

Comparing coefficients for all xi we obtain

1
4 = 1

4 , −3 = 3
2 A, A + 15 = 5

4 B + 2A2, −24 = 3AB, B + 12 = B2.

Solving this system yields A = −2, B = 4.

Conclusion. There exists a unique polynomial P satisfying the
original equation, namely P(x) = 1

4 x2 − 2x + 4.
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Category B (Individual Competition)

B–I–1
After easy manipulation we can rewrite the given inequality equiv-
alently in the equivalent form

(a − 2b)2 + (b − 2c)2
≥ 0.

Thus, the given inequality holds for all real numbers a, b, c.
Equality holds if and only if a = 2b and simultaneously b = 2c,

i.e. for the triples (a, b, c) = (4c, 2c, c) with arbitrary real number c.

B–I–2
We show, that vertices of each face of the cube ABCDEFGH are nec-
essary assigned exactly two even and two odd numbers from the
given set of numbers with numbers of the same parity always in
opposite vertices in each face.

It is easy to see, that to vertices of each face it cannot be as-
signed either at most one even number or least three even numbers.
In these cases, for the assignment of vertices in the opposite face of
the cube it should remain in that case at most one odd or at most
one even number, which is impossible – with respect to conditions of
the given problem. Therefore, vertices of each face of this cube must
be assigned exactly by two even and exactly two odd numbers.

If we assign an even number to the vertex A, writing Ae, and
similarly an odd number to the vertex B, writing Bo.

We can first suppose, that the vertex A is assigned an even num-
ber. Then the seven of the vertices of the cube must be assigned
even or odd numbers from the given set only in following way (see
picture).

Ae Bo

CoDe

Ee Fo

GeHo
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The number of assignments of numbers of the set {1, 2, . . . , 8}

to the vertices of the cube is then equal (using the combinatorial
product principle) to

4! ⋅ 4! = (4!)2 = 576.

We can similarly proceed, the vertex A is assigned an odd number.
We then obtain the same number of corresponding positions.

Conclusion. There exist 2 ⋅ (4!)2 = 1 152 assignments to ver-
tices of the cube ABCDEFGH by numbers from the set {1, 2, . . . , 8}

satisfying conditions of the given problem.

B–I–3
Both trapezoids must be equilateral, so let us denote the angles of
one trapezoid by α and β (α + β = 180◦) and of the second one by γ,
δ (γ + δ = 180◦) as shown in the picture.

One can easily compute all the angles of a quadrilateral being
the intersection of these two trapezoids

φ = 360◦ − 90◦ − (180◦ − α) − (180◦ − δ ) = α + δ − 90◦,
χ = α + γ − 90◦,
ψ = β + γ − 90◦,
ω = β + δ − 90◦.

α α

ββ

γ

γ

δ

δ
φ

χ

ψ
ω
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So, we have

φ + ψ = (α + δ − 90◦) + (β + γ − 90◦) = (α + β ) + (γ + δ ) − 180◦ = 180◦,

which proves our claim.

B–I–4
We have 2016 = 25 ⋅ 32 ⋅ 7. The remainder of an integer x2 after
division by 2016 is 1 if and only if 2016 divides (x − 1)(x + 1). Let D be
a common divisor of x − 1 and x + 1. Then D divides (x + 1) − (x − 1) = 2,
so D ≤ 2. This means that at most one of the numbers x−1 and x+1 is
divisible by 3 or by 7. If one of the numbers x − 1 and x + 1 is divisible
by 2k where k ≥ 2, the second one is divisible by 2 only in the power
1. So, in order 25 to divide (x − 1)(x + 1) it is necessary and sufficient
that 24 divides one of the factors.

To 2016  (x − 1)(x + 1) it is necessary and sufficient that some of
the 3 numbers {24, 32, 7} divide (x − 1) and the others divide (x + 1).
This yields 23 = 8 combinations altogether. Each of the previous
possibilities gives (by the Chinese remainder theorem) a unique so-
lution modulo 24 ⋅ 32 ⋅ 7 = 1008, and therefore exactly 2 solutions in
the set {1, 2, . . . , 2016}.

There are 8 ⋅ 2 = 16 numbers of the set {1, 2, . . . , 2016} with
remainder 1 after division their square by 2016.

Remark. These numbers are 1 (1008  0), 127 (32 ⋅ 7  126 and
24  128), 433 (24⋅32  432 and 7  434), 449 (24⋅7  448 and 32  450),
559 (32  558 and 24 ⋅ 7  560), 575 (7  574 and 24 ⋅ 32  576), 881
(24  880 and 32 ⋅ 7  882), 1007 (1008  1008), 1009, 1135, 1441,
1457, 1567, 1583, 1889 and 2015.
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Category B (Team Competition)

B–T–1
A 4-digit palindromic number abba can be written as

a ⋅ 1001 + b ⋅ 110 = 11(91a + 10b).

If such a number is a perfect square, we must have 11  91a + 10b,
or

91a + 10b ≡ 3a − b ≡ 0 (mod 11).

There are only 8 pairs of digits satisfying this, and possible numbers
are therefore (1; 3), (2; 6), (3; 9), (4; 1), (5; 4), (6; 7), (8; 2) and (9; 5).
Checking the prime decompositions of the resulting numbers, we see
that 8228 = 22 ⋅112 ⋅17, and therefore 17 ⋅8228 = (2 ⋅11 ⋅17)2 = 3742 is
such a number. Checking all other possibilities confirms that there
are no other numbers with the required property.

B–T–2
Firstly we can see that the vertex C of the given right-angled trian-
gle is a point of the line PQ, since |6 QCA| = |6 PCB| = 45◦. Therefore

|6 QCP| = | 6 QCA| + | 6 ACB| + | 6 BCP| = 45◦ + 90◦ + 45◦ = 180◦.

If the given right-angled triangle ABC is isosceles, the statement of
the problem is obviously fulfilled.

Without loss of generality we can assume |AC| > |BC| (see pic-
ture). Let us consider the intersection point R (R ≠ C) of the line PQ
with the Thales circle k with the center S and the diameter AB. We
shall prove that R = D.

23



A B

C

P

Q

R

S

k

From the conditions of the problem and from the description of
the point R it follows that

|6 RCA| = | 6 QCA| = 45◦

holds. Moreover, from well-known relation between the angles RCA
and RSA in the circle we have

|6 RSA| = 2 ⋅ | 6 RCA| = 2 ⋅ 45◦ = 90◦.

This immediately implies that the point R (on the Thales circle k)
also lie on the perpendicular bisector of the hypotenuse AB, i.e. ABR
is the right-angled isosceles triangle with hypotenuse AB, and thus
R = D.

Thus the proof is finished.

B–T–3
It is easy to show that the squares of integers not divisible by 7 can
give only remainders 1, 2, 4 when divided by 7. A sum of integers
is divisible by 7 if the sum of their remainders when divided by 7 is
divisible by 7.

We will call an integer whose square gives a remainder r when
divided by 7 an integer with square-remainder r. We will further call
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the sum of squares of integers a square-sum of these integers. When
the set A contains six numbers whose square-remainders are 1, then
it is not possible to find a subset with square-sum divisible by 7.

We show that if the set A contains 7 elements or more, then it is
possible. First, observe that if the set A contains three integers with
square-remainders of 1, 2 and 4, then we can choose a set consisting
of these numbers, because 1 + 2 + 4 = 7. Similarly, if there are in A
seven integers with identical square-remainders, then we can choose
as a subset of A all of these integers.

The following table shows the other cases (in which there are
only two of three square-remainders)

Number Possible choice
of square-remainders of square-remainders

1 2 4 in a subset
1 6 0 1 + 2 + 2 + 2
2 5 0 1 + 2 + 2 + 2
3 4 0 1 + 2 + 2 + 2
4 3 0 1 + 2 + 2 + 2
5 2 0 1 + 1 + 1 + 1 + 1 + 2
6 1 0 1 + 1 + 1 + 1 + 1 + 2
0 1 6 2 + 4 + 4 + 4
0 2 5 2 + 4 + 4 + 4
0 3 4 2 + 4 + 4 + 4
0 4 3 2 + 4 + 4 + 4
0 5 2 2 + 2 + 2 + 2 + 2 + 4
0 6 1 2 + 2 + 2 + 2 + 2 + 4
1 0 6 1 + 4 + 4 + 4 + 4 + 4
2 0 5 1 + 4 + 4 + 4 + 4 + 4
3 0 4 1 + 1 + 1 + 4
4 0 3 1 + 1 + 1 + 4
5 0 2 1 + 1 + 1 + 4
6 0 1 1 + 1 + 1 + 4
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Category C (Individual Competition)

C–I–1

a) It is easy to see, that for p = 0 the given inequality is obviously
fulfilled for all real values of a and b.

b) We can easily prove that for p = 2 the given inequality is true for
all real numbers a and b. We can rewrite the given inequality
in the equivalent form a2 − 2ab + 2b2 ≥ 0. Then we have

a2
− 2ab + 2b2 = (a2

− 2ab + b2) + b2 = (a − b)2 + b2
≥ 0,

which is obviously true for all real numbers a and b. Thus, the
the given inequality is true for p = 2 and for all real values of a
and b.

If p = 3, the given inequality is not satisfied for all real
values of a and b. Choosing a = 3 and b = 2 (for instance) we can
see

a2 + 2b2 = 32 + 2 ⋅ 22 = 17 < 18 = 3 ⋅ 3 ⋅ 2 = 3ab.

C–I–2
Let us denote the three colours by capitals, R (red), W (white) and
B (blue). Let us first assume that the vertex A of the considered
hexagon ABCDEF is coloured red (R). All possibilities fulfilling the
conditions of the given problem are listed in the table below (the
vertex A is repeated in its right column).

A B C D E F A
R W R B W B R
R B R W B W R
R W B R W B R
R W B R B W R
R B W R W B R
R B W R B W R
R B W B R W R
R W B W R B R
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We therefore obtain a total of 8 possibilities for the red coloured
vertex A. Similarly, if we colour the vertex A white and then blue, we
obtain further 8 + 8 = 16 possibilities colouring all vertices according
the conditions of the problem.

Conclusion. There exist 3 × 8 = 24 possible colourings of all
vertices of hexagon ABCDEF in total.

C–I–3
Let H be the point on the segment BC such that DH ‖ AB (see pic-
ture). We prove that the triangles BHD and CED are congruent.

A B

C

D

E

H

Since DH ‖ AB, triangles ABC and CDH are similar. Hence
CDH is also an equilateral triangle. Therefore |DH| = |DC|. Further,
we obviously have

|6 BHD| = |6 DCE| = 120◦ and |HB| = |DA| = |EC|.

This implies that the triangles BHD and CED are congruent by the
theorem s–a–s and therefore |DB| = |ED|.

This concludes the proof.

C–I–4
Since

4 ⋅
x + y

2
= 5 ⋅

√
xy

is given, we have 2x + 2y = 5√xy or 4x2 − 17xy + 4y2 = 0. This is
equivalent to (4x − y)(x − 4y) = 0, and we see that x : y = 4 : 1 or
x : y = 1 : 4.
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Category C (Team Competition)

C–T–1
For arbitrary real numbers a, b, c with abc ≠ 0, we compute

P = A ⋅ B ⋅ C =
a2 + b2

c2 ⋅
b2 + c2

a2 ⋅
c2 + a2

b2 =

=
(

a2

c2 +
b2

c2

)(
b2

a2 +
c2

a2

)(
c2

b2 +
a2

b2

)
=

=
b2c2

c2b2 +
b2a2

c2b2 +
c2

b2 +
a2

b2 +
b4c2

a2c2b2 +
b4a2

a2c2b2 +
b2c2

a2b2 +
b2a2

a2b2 =

= 1 +
a2

c2 +
c2

b2 +
a2

b2 +
b2

a2 +
b2

c2 +
c2

a2 + 1 =

= 2 +
(

a2

c2 +
b2

c2

)
+
(

b2

a2 +
c2

a2

)
+
(

c2

b2 +
a2

b2

)
=

= 2 + A + B + C = 2 + S.

This implies P − S = 2.

Conclusion. The difference P − S = 2 holds for all real numbers
a, b, c with abc ≠ 0.

C–T–2
Let T1 and T2 be the points of tangency of the tangents of c1 from P.
Since | 6 M1T1P| = | 6 M1T2P| = |6 T1PT2| = 90◦ and |M1T1| = |M1T2| = r,
we see that M1T1PT2 is a square with sides of length r. Since M1P
is a diagonal of this square, we have |M1P| = r

√
2. We are given

that |M1M2| = r
√

2 and since P lies on c2, we have |M2P| = 2r. Since
|M1P|2 + |M1M2|2 = 2r2 + 2r2 = 4r2 = |M2P|2, triangle M1M2P is right-
angled with | 6 M2M1P| = 90◦, and the area A of M1M2P is therefore
equal to

A =
1
2

⋅ |M1P| ⋅ |M1M2| =
1
2

⋅ r
√

2 ⋅ r
√

2 = r2.
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M1 M2

T1 T2

P

r

r
√

2

r
√

2

2r

c1

c2

C–T–3
We note that 5040 has the prime decomposition 5040 = 24 ⋅ 32 ⋅ 5 ⋅ 7.

a) 5040 = 7 ⋅ 8 ⋅ 9 ⋅ 10.
b) 5040 = 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6 ⋅ 7.
c) Since 5040 = 70 ⋅ 72, it is the product of two consecutive even

integers. If it were also the product of two consecutive integers,
one must be larger than 70 and the other smaller than 72. These
cannot be consecutive, and the proof is complete.
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Results



Category A (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Marian Poljak Přerov 8 8 8 6 30
2. Jan Gocník Přerov 8 8 8 0 24
3. Konstantin Andritsch Graz 7 1 6 8 22
4. Adam Szreter Chorzów 8 1 0 6 15

Damian Wałoszek Bílovec 1 8 3 3 15
6. Jan Równicki Chorzów 7 0 1 6 14
7. Benedikt Andritsch Graz 7 1 1 3 12
8. Adrian Steinmann Graz 8 0 1 1 10
9. Daniel Horiatakis Graz 8 0 0 1 9

Jiří Nábělek Bílovec 6 0 2 1 9
11. Jan Šuta Přerov 8 0 0 0 8
12. Bára Tížková Bílovec 3 1 1 1 6
13. Martin Kubeša Přerov 0 0 1 0 1

Tomáš Nguyen Bílovec 0 0 1 0 1
Orest Tereszczuk Chorzów 1 0 0 0 1

16. Karol Pieczka Chorzów 0 0 0 0 0
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Category B (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Denisa Chytilová Přerov 8 8 8 1 25
2. Marcin Socha Chorzów 8 8 8 0 24
3. Katarzyna Kępińska Chorzów 8 8 6 1 23
4. Sebastian Fellner Graz 8 8 0 6 22
5. Jana Pallová Přerov 8 6 1 2 17
6. Olaf Placha Chorzów 2 6 8 0 16
7. Michaela Svatošová Bílovec 3 8 1 1 13
8. Tomáš Křižák Bílovec 2 8 0 0 10
9. Oskar Kleinoscheg Graz 0 8 0 1 9

10. Thiemo Dsubanko Graz 0 8 0 0 8
Jakub Gogela Přerov 0 8 0 0 8

12. Berenika Čermáková Bílovec 2 2 0 0 4
13. Kristýna Janovská Bílovec 2 0 0 0 2
14. Julian Narimany Chorzów 0 1 0 0 1
15. Louies Kirolos Graz 0 0 0 0 0
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Category C (Individual Competition)

Rank Name School 1 2 3 4 ∑

1. Amálie Dostalíková Přerov 3 8 0 0 11
Clara Rinner Graz 3 0 8 0 11

3. Max Dresler Bílovec 1 2 1 6 10
4. Jaroslav Hradil Přerov 1 1 0 6 8

Martin Šváb Přerov 0 1 0 7 8
6. Ondřej Jozek Bílovec 2 4 0 0 6
7. Matyáš Florík Bílovec 0 0 0 5 5
8. Minh Nguyen Graz 2 0 0 2 4
9. Bartosz Kipa Chorzów 2 0 0 1 3

10. Darian Poljak Přerov 2 0 0 0 2
Johannes Trattner Graz 2 0 0 0 2

12. Štěpán Postava Bílovec 0 0 0 1 1
13. Flavio Arrigoni Graz 0 0 0 0 0

Pola Gajek Chorzów 0 0 0 0 0
Wojciech Socha Chorzów 0 0 0 0 0
Anna Szymik Chorzów 0 0 0 0 0
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Category A (Team Competition)

Rank School 1 2 3 ∑

1. GJŠ Přerov 8 8 1 17
2. AZSO Chorzów 0 1 3 4
3. GMK Bílovec 0 0 3 3
4. BRG Kepler, Graz 0 0 1 1

Category B (Team Competition)

Rank School 1 2 3 ∑

1. GJŠ Přerov 8 8 6 22
2. AZSO Chorzów 8 8 4 20
3. GMK Bílovec 8 7 2 17
4. BRG Kepler, Graz 8 8 0 16

Category C (Team Competition)

Rank School 1 2 3 ∑

1.-2. BRG Kepler, Graz 8 4 8 20
1.-2. GMK Bílovec 8 4 8 20

3. AZSO Chorzów 1 8 8 17
4. GJŠ Přerov 0 4 6 10
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České republiky a posluchače matematických oborů
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