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Preface

The 25th Mathematical Duel was held in Graz from 7th till 11th
March 2017. It was the last of three competitions planned as part
of the “Mathematical Duel Plus” project, which was financed by the
Erasmus Plus programme. The students from three age groups –
Category A (age 17–19), Category B (age 15–17), Category C (age
13–15) – took part in individual and team competition. The teams
came from Czech, Polish and Austrian schools, namely Gymnázium
Jakuba Škody in Přerov and Gymnázium Mikuláše Koperníka in
Bílovec, Akademicki Zespół Szkół Ogólnokształcących in Chorzów,
Bundesrealgymnasium Kepler in Graz.

The individual competition started on March 8th at 9 a.m. The
students in each age group were allowed two hours and thirty min-
utes to solve four problems (they could achieved maximum score of 8
points for each problem). Since all problems were stated in English,
the teachers aided the members of their respective teams in under-
standing their content. The students were allowed to write their so-
lutions either in their native languages or in English.

The team competition started after a coffee and snack break.
The participating schools were allowed to send 12 persons—four per-
sons for each age group. Thus, four students representing each school
and age group formed one team. The teams had 100 minutes to solve
three problems.

This booklet contains all problems with solutions and results
of the 25th Mathematical Duel from the year 2017.

The authors
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Problems



Category A (Individual Competition)

A–I–1
Determine all integers n satisfying the equation

n∑
k=1

1√
k
√

k+ 1 (
√

k+
√

k+ 1)
=

24
25 .

Pavel Calábek

A–I–2
Prove that there exist infinitely many natural powers of 4 such that
their decimal representations contain at least one odd digit.

Jacek Uryga

A–I–3
Let a, b, c be lengths of the sides of a triangle ABC and ha, hb, hc
be the lengths of its altitudes from the vertices A, B, C, respectively.
Furthermore, let d be the diameter of the circumcircle of the triangle
ABC. Prove that the inequality

a2 + b2 + c2

ha + hb + hc
≥ d

holds. When does equality hold?
Jaroslav Švrček

A–I–4
Determine all functions f :R → R which take finitely many values
and satisfy the condition

f (x+ 1) = 2f (x) + 1

for all real numbers x.
Jacek Uryga
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Category A (Team Competition)

A–T–1
Determine all quadruples (x, y, z,u) of non-negative integers satisfy-
ing the equation

2x + 3y + 5z = 7u.

Józef Kalinowski

A–T–2
We are given two mutually perpendicular rays p, q in the plane with
common initial point A. Let C be an interior point of the smaller
angle with the arms p and q. Determine the locus of the centres of
the circumcircles of all cyclic quadrilaterals ABCD with B ∈ p and
D ∈ q.

Jaroslav Švrček

A–T–3
Determine all integers n such that 4n2 + 5n+ 16 is a perfect square.

Pavel Calábek
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Category B (Individual Competition)

B–I–1
Let n be a positive integer and a1,a2, . . . ,an be real numbers fulfilling
the condition

a1 ≥ a2 ≥ . . . ≥ an.

Let us define Si = a1 + a2 + . . . + ai for all i (2 ≤ i ≤ n). Prove that
the inequality

Sn−1
n− 1 ≥

Sn
n

holds. When does equality hold?
Józef Kalinowski

B–I–2
We are given a triangle ABC with the longest side AB. Let K , L be
points on the side AB such that |AL| = |AC|, |BK | = |BC|, and M, N
be points on the sides BC, AC, respectively, such that |BM| = |BL|,
|AN| = |AK |. Prove that the points K , L, M, N and C lie on the same
circle.

Jaroslav Švrček

B–I–3
Prove that there exist infinitely many natural powers of 9 such that
their decimal representations contain at least one even digit.

Jacek Uryga

B–I–4
On the circle with radius 1 we are given a set of arcs with lengths
less than π, the sum of whose is greater than 2π. Prove that there
exists a straight line that goes through the center of the circle and
intersects at least three of these arcs.

Jacek Uryga
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Category B (Team Competition)

B–T–1
We are given two sets M = {2525,2525 + 1,2525 + 2,2525 + 3} and
N = {a,b, c,d}. Determine the number of all bijective (i.e. unique
and invertable) mappings M→ N such that the sum

ab+ bc+ cd+ da

assumes the maximum possible value and determine this value.
Jaroslav Švrček

B–T–2
In an equilateral triangle ABC, let M denote the midpoint of the side
AB. Furthermore, let F denote the foot of the perpendicular from M
to BC. The line ` is perpendicular to AF and passes through C. Prove
that ` intersects MF in the midpoint of MF.

Robert Geretschläger

B–T–3
Albert and Zita are playing a game. On the table in front of them,
there is a bowl with n coins. In each move, they are allowed to take
1, 2 or 3 coins from the bowl. They are never allowed to take the
same number that the other has taken in the move before. (If Zita
takes 2 coins, for example, Albert can only take either 1 or 3 coins
in the next move.) Albert has the first move, and after that, they
take turns. If Zita ever has a total number of coins divisible by 3, she
wins. The game ends if Zita wins or when there are no more moves
possible for the player whose turn would be next. Albert wins if Zita
does not. Which player will win the game if both play with the best
possible strategy? Describe their strategy and prove that this player
will certainly win. For which values of n does Albert have a winning
strategy, and for which values of n does Zita have a winning strategy?

Robert Gererschläger
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Category C (Individual Competition)

C–I–1
How many integers from the set {1,2, . . . ,2017} are divisible by 11
but not by 7?

Józef Kalinowski

C–I–2
We are given a rectangle ABCD with |AB| = a > b = |BC|. Let us sup-
pose that the feet of the perpendiculars from the vertices A and C to
the diagonal BD divide this diagonal into three congruent segments.
Determine the ratio a : b.

Jaroslav Švrček

C–I–3
We are given a system of equations

x+ cy = c,
2x+ 4y = 3

with unknowns x and y. Determine all possible values of the real
parameter c such that the equation 4x− y = 2 holds.

Józef Kalinowski

C–I–4
The Count of Lichenem likes to count, but he doesn’t like most of the
numbers. He likes a number if it has both even and odd digits, and
he doesn’t like a number if it has an even number of odd digits or an
odd number of even digits.

a) How many numbers smaller than 100 does the Count like?
b) How many numbers smaller than 1 000 does the Count like?
c) How many numbers smaller than 10 000 does the Count like?

Robert Geretschläger
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Category C (Team Competition)

C–T–1
Prove that for any odd integer n, the integer

n3 + 3n2 − n− 3

is divisible by 24.
Józef Kalinowski

C–T–2
Let ABCD be a rectangle and M a point on the side CD such that
ABM is a right-angled triangle with the hypotenuse AB. It is known
that |AB| : |BC| = 3 :

√
2 holds and |CM| > |DM|. Let P, Q and

R denote the areas of triangles AMD, BMC and ABM, respectively.
Determine the ratio P : Q : R.

Robert Geretschläger

C–T–3
Different positive integers written on the blackboard were divided
into three non-empty sets. Numbers of the first set were multiplied
by 2, numbers of the second set were multiplied by 3, numbers of
the third set were multiplied by 5 and all numbers written initially
on the blackboard were erased. After this, only four different two-
digit numbers remained on the blackboard. How many integers were
initially on the blackboard? Determine all possible answers.

Pavel Calábek
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Solutions



Category A (Individual Competition)

A–I–1
We can rewrite each of fractions in the given sum in the following
manner

1√
k
√

k+ 1 (
√

k+
√

k+ 1)
=

√
k+ 1−

√
k√

k
√

k+ 1
=

1√
k
− 1√

k+ 1

for all positive integers k. We therefore obtain

n∑
k=1

1√
k
√

k+ 1 (
√

k+
√

k+ 1)
=

n∑
k=1

(
1√
k
− 1√

k+ 1

)
= 1− 1√

n+ 1
.

Solving the equation
1− 1√

n+ 1
=

24
25

give us
√

n+ 1 = 25 and therefore n = 624.
Conclusion. The given equation has a unique solution, namely

n = 624.

A–I–2
The last digit of a natural power of 4 can be only 4 or 6. By the
divisibility rule for 4, the last two digits can only be: 04, 16, 24, 36,
44, 56, 64, 76, 84, 96. The endings 16, 36, 56, 79, 96 contain an odd
tens digit. For the powers with endings 04, 24, 44, 64, 84, the next
larger power of 4 therefore contains an odd tens digit. We see that
every larger power of 4 therefore contains an odd tens digit, and the
proof is complete.

A–I–3
We will prove the given inequality for an acute-angled triangle ABC
(The proofs for a right-angled or obtuse-angled triangle ABC are sim-
ilar). Let D denote the foot of the altitude from the vertex C (D is
an interior point of the side AB). Furthermore, let CE be the di-
ameter of the circumcircle of the given triangle ABC (|CE| = d).
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A B

C

D

E

S

b a
hc

From the picture we see that |∠ABC| = |∠AEC|. We therefore have
|∠ACE| = |∠DCB|, and the right triangles ECA and BCD are there-
fore similar. This implies

|AC| : |EC| = |DC| : |BC|, or b : d = hc : a.

We can rewrite the last identity in the form

ab = dhc. (1)

Similarly, we obtain

bc = dha (2)
and

ca = dhb. (3)

Adding identities (1)–(3) we get

ab+ bc+ ca = d(ha + hb + hc).

From the well-known inequality a2 + b2 + c2 ≥ ab + bc + ca (with
equality for a = b = c), we therefore obtain

a2 + b2 + c2 ≥ ab+ bc+ ca = d(ha + hb + hc),

which is equivalent to the desired inequality

a2 + b2 + c2

ha + hb + hc
≥ d.
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Equality holds iff a = b = c, i.e. in the case of the equilateral triangle
ABC. Thus, the proof is finished.

Another solution. Rewriting the given inequality we have

a2 + b2 + c2 ≥ d(ha + hb + hc) = 2r(ha + hb + hc), (4)

where r is the radius of the circumcircle of the triangle ABC. The
Law of Sines yields

2r = a
sinα =

b
sin β =

c
sin γ . (5)

Substituting in (4) from (5) we obtain

a2 + b2 + c2 ≥ b
sin β · ha +

c
sin γ · hb +

a
sinα · hc. (6)

Since
ha

sin β = c, hb
sin γ = a, hc

sinα = b,

we can rewrite (6) in the form

a2 + b2 + c2 ≥ ab+ bc+ ca

which is an equivalent form, as in the first solution.

A–I–4
Let us take an arbitrary number a and define a sequence (xn) as fol-
lows

x1 = a, xn+1 = xn + 1.
Note that the sequence an = f (xn) satisfies the condition

an+1 = f (xn+1) = f (xn + 1) = 2an + 1

and we therefore have an+1 − an = an + 1 for every n.
Now, observe that if a1 > −1, it follows that a2 − a1 = a1 + 1 > 0

holds. Thus we have a2 > −1 and a3 − a2 = a2 + 1 > 0. Repeated
application of this argument yields

−1 < a1 < a2 < a3 < . . .
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This means that the set of values of f cannot be finite.
Analogously, we can see that if a1 < −1, then

−1 > a1 > a2 > a3 > . . .

follows, and again the set of values of f cannot be finite.
It follows that the only function satisfying our assumption can be

the constant function f (x) = −1, which indeed satisfies the assump-
tion.

Category A (Team Competition)

A–T–1
The numbers 2x, 3y, 5z and 7u are certainly all integers. Because
the number 7u is an odd number, then the number 2x also is an odd
number. It is possible for x = 0 only. Then we get the equation

1+ 3y + 5z − 7u = 0. (1)

Let us consider two possible cases:
a) If y ≥ 1, then we have

1− 7u ≡ 0 (mod 3),
3y + 5z ≡ (−1)z (mod 3).

Summing up both these congruences we get

1+ 3y + 5z − 7u ≡ (−1)z (mod 3)

which is a contradiction to (1). Thus, the equation (1) has no
solution in non-negative integers y, z,u.

b) If y = 0, we have the equation

2+ 5z = 7u. (2)

Futher let us consider three possible cases in (2):
• z ≥ 2. Then 2+ 5z ≡ 2 (mod 25) and dividing the number

7u by 25 we cyclic obtain the remainders: 7, 24, 18 and 1 and
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the last equation is not fulfilled for any non-negative integer
pair of numbers z,u.

• z = 1. Then we have the new equation 2 + 5 = 7u and then
u = 1 and after checking, we have a solution x = y = 0,
z = u = 1 of the equation.

• z = 0. Then we have the new equation 2 + 1 = 7u, and this
equality is not true for any non-negative integer number u.

Conclusion. The given Diophantine equation has the unique so-
lution x = y = 0, z = u = 1 (in non-negative integers).

A–T–2
Let us consider a cyclic quadrilateral ABCD with B ∈ p, D ∈ q and
with the circumcenter S. We then have |∠BAD| = |∠BCD| = 90◦
and |SA| = |SB| = |SC| = |SD|. The point S must therefore be the
midpoint of the segment BD and simultaneously it must lie on the
perpendicular bisector o of the segment AC. Let P and Q be the points
of intersection of o with the rays p and q, respectively (see picture).
This implies that the center S of the circumcircle of the quadrilateral
ABCD lies on the segment PQ.

A B

C

D

P

Q

S

k

p

q

o

Conversely, we can show that for each interior point S of the seg-
ment PQ, there exists a cyclic quadrilateral ABCD with the given
properties. Let us consider the circle c with the center S and the ra-
dius |SA| = |SC|. The circle c meets the rays p, q in points B and D
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respectively. Since |∠BAD| = 90◦, S is the midpoint of BD. Thus, for
each interior point S of the segment PQ, there exists a cyclic quadri-
lateral ABCD with B ∈ p and D ∈ q.

Conclusion. The locus of centers of all quadrilaterals ABCD with
the given properties is the open segment PQ.

A–T–3
Let

4n2 + 5n+ 16 = m2

holds for non-negative integer m. This is equivalent to

(
2n+ 5

4

)2
−m2 =

25
16 − 16

or
(8n+ 5− 4m)(8n+ 5+ 4m) = −231.

We note that 231 = 3 · 7 · 11 holds and both factors 8n + 5 − 4m ≤
8n+ 5+ 4m are congruent to 1 modulo 4. We are therefore left with
the following cases.

8n+ 5− 4m −231 −11 −7 −3
8n+ 5+ 4m 1 21 33 77

16n+ 10 −230 10 26 74
n −15 0 1 4
m 29 4 5 10

Conclusion. The value of 4n2 + 5n + 16 is a prefect square only for
n ∈ {−15,0,1,4}.
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Category B (Individual Competition)

B–I–1
By the assumptions, we have the inequalities

a1 ≥ an,

a2 ≥ an,

...
an−1 ≥ an.

Summing up, we therefore obtain

Sn−1 ≥ (n− 1) · an.

Adding (n− 1) · Sn−1 to both sides of these inequality, we obtain

n · Sn−1 ≥ (n− 1) · Sn

and dividing this inequality by n(n − 1) > 0 yields the required in-
equality and finishing the proof.

Equality holds iff Sn−1 = (n − 1) · an, and this is only possible
if equality holds in each of the inequalities a1 ≥ an, a2 ≥ an, . . . ,
a1 ≥ an, which holds iff

a1 = a2 = . . . = an.

B–I–2
It is easy to see that KLCN and KLMC are isosceles trapezoids with
LC ‖ NK and LM ‖ CK since triangles ACL, BCK , ANK and ABL are
all isosceles. Both of these trapezoids are therefore cyclic. Their ver-
tices lie on the circumcircle of the triangle KLC, because the vertices
K , L and C lie simultaneously on the circumcircles of both isosceles
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trapezoids. Thus, all five points K , L, M, N and C lie on the same
circle, and the proof is finished.

A B

C

N

K L

M

B–I–3
The number 92 is equal to 81. Its tens digit is even. Multiplying this
number by 9 we obtain a number with the last digit 9 and with an
even tens digit, namely 2.

If we multiply such a number by 9, we obtain a number with the
ones digit 1 and the tens digit even. If we multiply this number by 9
once again, we again obtain a number with the ones digit 9 and the
tens digit even. This shows that the tens digit of all powers of 9 are
even, completing the proof.

B–I–4
Let A denote the set of n arcs and consider the set A′ of all arcs from
A reflected with respect to the center of the circle. It is obvious that
the sum of the lengths of arcs from the set A ∪ A′ is greater than 4π
and none of these arcs will be intersected more than onece by any
straight line going through the center of the circle.

If the assumption were false, each straight line going through
the center of the circle would intersect zero or two arcs from A∪A′ on
each side of the center of the circle. This would mean in turn that the
sum of all arcs from A ∪ A′ would be less than or equal to 4π, which
is a contradiction. We therefore see that there must exist a line with
the required property.
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Category B (Team Competition)

B–T–1
First, let us write the given sum in the way

ab+ bc+ cd+ da = (a+ c)(b+ d).
From the AM-GM inequality for the positive numbers a+ c and b+d
we therefore get

(a+ c)(b+ d) ≤ [(a+ c) + (b+ d)]2
4 =

(a+ b+ c+ d)2
4

=
(4 · 2525 + 6)2

4 .

This maximum value can be obtained if and only if
a+ c = b+ d. (1)

For the given values of M, this is fulfilled only in two cases:
a) a, c ∈ {2525,2525 + 3} and b,d ∈ {2525 + 1,2525 + 2},
b) a, c ∈ {2525 + 1,2525 + 2} and b,d ∈ {2525,2525 + 3}.

In each case we have exactly 4 bijective mappings of both sets
fulfilling (1).

Conclusion. There exist altogether 2 · 4 = 8 bijective mappings
satisfying the conditions of the given problem.

B–T–2
Let P denote the midpoint of BC and Q the common point of ` and
MF.

A B

C

M

P

F

Q

`
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We first note that triangles APB and CFM are both right tri-
angles with |∠BAP| = |∠MCF| = 30◦, and are therefore similar. We
now further note that AP ⊥ CB = CF, CB ⊥MF (and thus PF ⊥ FQ),
and CQ = ` ⊥ AF hold. The triangles APF and CFQ must there-
fore also be similar. Since |PF| = 1

2 · |PB|, we therefore also have
|FQ| = 1

2 · |FM|, and we see that ` does indeed intersect MF in the
mid-point of MF as claimed.

B–T–3
Albert certainly wins for n ≤ 3, since Zita will never have 3 coins. If
there are 4 coins, Albert can take at least 2 of them in his first move,
and Zita again cannot have 3 coins. If there are 5 or 6, Albert can
take 3 coins in his first move. Since Zita cannot take 3, Albert can
take another, and once again Zita can never get 3 coins altogether.
We see that Albert certainly has a winning strategy for n ≤ 6.

We now assume that n is sufficiently large. For his first move,
Albert must take 3, because Zita would otherwise take 3 on her first
move and win. If Zita then takes 1, Albert must take 2 (because
Zita would otherwise take 2 and have a total of 1 + 2 = 3 and win).
Zita can then take 1 again. Since Albert must now take 2 or 3, he
cannot block Zita from taking 1 again on her third move, and she
will certainly win. This scenario is true for all values of n ≥ 11, and
Zita will certainly win in this case.

For 7 ≤ n ≤ 10, Albert must once again take 3 in the first move.
No matter what Zita does, Albert can block her on the next moves,
as we see in the following argument.

Zita can only take 1 or 2 coins in her first move, and Albert can
block a win in Zita’s second move by taking 2 if Zita took 1 and 1 if
Zita took 2. No matter how many coins Zita takes in her second move,
Albert can take all remaining coins with his third move and win.

We see that Albert has a winning strategy for n ≤ 10 and Zita
has a winning strategy for n ≥ 11.
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Category C (Individual Competition)

C–I–1
Let A = {1,2, . . . ,2017}. Because 2017 : 11 .

= 183.3, there are 183
numbers in the set A what are divisible by 11. Among these are the
numbers not fulfilling the assumptions of the problem, namely these
divisible divisible by 7 · 11 = 77. Because 2017 : 77 .

= 26.2, there are
26 numbers in A that are divisible by 77.

We therefore have 183−26 = 157 numbers in A that are divisible
by 11, but not by 7.

C–I–2
Let K and L be the feet of the perpendiculars from A and C to the
diagonal BD, respectively, with

|DK | = |KL| = |LB| = 1
3 |BD| = 1

3
√

a2 + b2.

A B

CD

K

L
b

a

Using the Pythagorean theorem in the right triangles ABK and DAK
yields

|AK |2 = a2 − 4
9 (a

2 + b2) = b2 − 1
9 (a

2 + b2).

This implies

a2 : b2 = 2 : 1, or a : b =
√

2 : 1.

Conclusion. The ratio of the lengths of the sides of the considered
rectangle is a : b =

√
2 : 1.
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C–I–3
By the first equation we have x = c − cy. Substituting in the second
equation, we obtain

2(c− cy) + 4y = 3⇔ 2c− 2cy+ 4y = 3⇔ y(4− 2c) = 3− 2c.

If 4− 2c 6= 0, we therefore obtain

y = 3− 2c
4− 2c .

(Note that y − 2c = 0 ⇔ c = 2 yields x + 2y = 2 which contradicts
2x+ 4y = 3.) Then

x = c− cy = c(1− y) = c
(

1− 3− 2c
4− 2c

)
=

c
4− 2c .

The solution of the system is therefore

x = c
4− 2c , y = 3− 2c

4− 2c

for c 6= 2.
Since x and y satisfy the equation 4x− y = 2, we have

4 · c
4− 2c −

3− 2c
4− 2c = 2 ⇔ 6c− 3

4− 2c = 2.

We therefore have c = 11
10 .

Conclusion. The system has a unique solution (x, y) satisfying
the equation 4x− y = 2 for c = 11

10 .

C–I–4

a) The Count does not like any one-digit numbers, since they cannot
have both odd and even digits. He does not like any two-digit
numbers either, since the only way they can have both odd and
even digits is if they have one of each, and this means that they
have an odd number (one) of even digits. We see that the Count
does not like any numbers smaller than 100.
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b) From a), we know that the only numbers smaller than 1000 the
Count can like must have three digits. If a three-digit number
has both odd and even digits, it must have 2 of one kind and one
of the other. Since the count does not like numbers with an odd
number of even digits, the ones he likes all have an even number
of even digits. These all therefore have 2 even digits and one odd
digit. If the odd digit is the first one, it can be either 1,3,5,7 or
9. The other two digits can each be either 0,2,4,6 or 8. There
are therefore 53 = 125 such numbers. Similarly, if the odd digit
is either the second or third digit, it can also be any of the 5 odd
digits. The first digit cannot be 0, so it can only be one of the
four digits 2,4,6 or 8, while the remaining one can be any of the
5 even digits in either case. In both cases, there are 5 ·4 ·5 = 100
numbers the Count likes. This yields a total of 125+2·100 = 325
numbers less than 1000 the Count likes.

c) We shall now show that the Count does not like any four-digit
numbers. If a four-digit number has both odd and even digits, it
has either 2 of each, or one of one kind and 3 of the other. If it
has two of each, it has an even number of odd digits, and Count
does not like it. If it has one of one kind and three of the other, it
has either 1 or 3 even digits, i.e. an odd number of even digits in
either case. The Count does not like any such a number either.
We see that the Count does not like any four-digits numbers, and
any number smaller than 10000 he likes, must be smaller than
1000. The number of such numbers was already determined in
b) to be equal to 325.

Category C (Team Competition)

C–T–1
Let L = n3 + 3n2 − n− 3. Factorizing, we obtain

L = n3 + 3n2 − n− 3 = n2 (n+ 3)− (n+ 3) = (n2 − 1)(n+ 3)
= (n− 1)(n+ 1)(n+ 3).
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Because n is an odd integer, we can write n in the form n = 2k − 1,
where k is an integer. Substitution then yields

L = (2k− 1− 1)(2k− 1+ 1)(2k− 1+ 3) = (2k− 2) · 2k · (2k+ 2)
= 8(k− 1)k(k+ 1),

and this means, that L is divisible by 8. It follows that the number
(k − 1)k(k + 1) is the product of three consecutive integers. Among
these three consecutive integers, exactly one is divisible by 3. It fol-
lows that the product (k− 1)k(k+ 1) is divisible by 3 for any integer
k, and the number 8(k− 1)k(k+ 1) is therefore divisible by 24, what
finishing the proof.

C–T–2
Writing |AB| = 3a and |BC| =

√
2 a, we can set |MC| = x. As

AB ‖ CD, we have |∠CMB| = |∠ABM|, and since we also have

|∠DAM| = 90◦ − |∠AMD| = 90◦ − (180◦ − 90◦ − |∠CMB|) = |∠CMB|,

we see that the three right triangles AMD, MBC and BAM are all
similar.

A B

CD M

√
2 a

3a

x

P Q

R

We now note that |MD| = 3a− x, and therefore

|BC| : |CM| = |MD| : |DA| ⇔
√

2 a : x = (3a− x) :
√

2 a
⇔ 2a2 = 3ax− x2

which gives us

x2 − 3ax+ 2a2 = 0 ⇔ (x− a)(x− 2a) = 0,
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and therefore either x = a or x = 2a. Since |CM| > |DM| we have
|MC| = x = 2a, and therefore |MD| = 3a − 2a = a. The areas of the
triangles can therefore be calculated as

P = 1
2 ·
√

2 a · a = 1
2
√

2 a2,

Q = 1
2 ·
√

2 a · 2a =
√

2 a2

and
R = |AB| · |BC| − (P +Q) = 3

√
2 a2 − ( 1

2
√

2 a2 +
√

2 a2) = 3
2
√

2 a2,

which gives us
P : Q : R = 1 : 2 : 3.

C–T–3
Let M2, M3 and M5 denote the sets of numbers initially written on
the blackboard which are than multiplied by 2, 3 and 5, respectively.
Furthermore, let F denote the final set of four two-digit integers on
the blackboard.

Different numbers from each of the sets Mi map onto different
numbers in F and therefore each set Mi has at most four elements.
Since all Mi are non-empty, each of them has at least one element.
Each of the four integers in F has at least one origin on the table. It
follows that the original configuration of numbers on the blackboard
consist of at most 3 · 4 = 12 integers.

If at least three integers from F have origins in each of the sets
M2, M3 and M5, they are divisible by 2, 3 and 5, and therefore by 2 ·3 ·
5 = 30. Only three such two-digit integers exists, namely 30, 60, 90,
and therefore these numbers must lie in F. This means {15,30,45} ⊂
M2, {10,20,30} ⊂M3 and {6,12,18} ⊂M5, which is a contradiction,
because 30 are in both sets M2 and M3. It follows that there could not
be 11 or 12 integers on the blackboard initially, because in the first
case two sets Mi contain 4 elements and the third 3 elements, and
in the second case all Mi contain four elements. In both cases, three
numbers from F have origins in all Mi, which is impossible.

The following example shows that there could have been any
number of integers from 4 to 10 on the blackboard initially (where #
denotes the number of integers initially written on the blackboard).
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# M2 M3 M5 F
4 30,45 10 3 15,30,60,90
5 15,30,45 10 3 15,30,60,90
6 15,30,45 5,10 3 15,30,60,90
7 15,30,45 5,10,20 3 15,30,60,90
8 15,30,45 5,10,20 3,6 15,30,60,90
9 15,30,45 5,10,20 3,6,12 15,30,60,90

10 15,30,45 5,10,20 3,6,12,18 15,30,60,90

Conclusion. Initially, there could be any number from 4 to 10
different integers written on the blackboard.
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Results



Category A (Individual Competition)

Rank. Name School 1 2 3 4
∑

1. Sebastian Fellner BRG Kepler 8 8 0 8 24
2. Adam Szreter AZSO Chorzów 0 6 8 8 22
3. Jan Šuta GJŠ Přerov 8 8 0 2 18
4. Jiří Nábělek GMK Bílovec 0 8 6 3 17

Karol Pieczka AZSO Chorzów 0 8 8 1 17
6. Piotr Breguła AZSO Chorzów 8 8 0 0 16

Vít Horčička GJŠ Přerov 8 8 0 0 16
Marcin Socha AZSO Chorzów 7 8 0 1 16
Bára Tížková GMK Bílovec 8 7 1 0 16

10. Jana Pallová GJŠ Přerov 0 8 0 6 14
Damian Wałoszek GMK Bílovec 0 8 0 6 14

12. Konstantin Andritsch BRG Kepler 0 8 1 1 10
13. Denisa Chytilová GJŠ Přerov 8 0 1 0 9

Kristýna Janovská GMK Bílovec 0 8 0 1 9
15. Yoram Baur Graz Allstars 0 8 0 0 8

Matthias Likawetz Graz Allstars 0 8 0 0 8
Kevin Nguyen BRG Kepler 0 8 0 0 8
Christian Thallinger Graz Allstars 0 8 0 0 8

19. Adrian Steinmann BRG Kepler 0 3 0 1 4
20. Anja Zotter Graz Allstars 0 0 0 0 0
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Category B (Individual Competition)

Rank. Name School 1 2 3 4
∑

1. Matouš Bílek GJŠ Přerov 8 8 8 0 24
Julian Narimany AZSO Chorzów 8 8 8 0 24
Clara Rinner BRG Kepler 8 8 8 0 24
Marcin Traskowski AZSO Chorzów 8 8 8 0 24

5. Thiemo Dsubanko BRG Kepler 8 8 7 0 23
Tomáš Křižák GMK Bílovec 6 8 8 0 22

7. Oskar Kleinoscheg BRG Kepler 8 6 6 0 20
Minh Nguyen BRG Kepler 8 4 8 0 20
Michaela Svatošová GMK Bílovec 4 8 8 0 20

10. Olaf Placha AZSO Chorzów 4 7 8 0 19
11. Teresa Reisner Graz Allstars 0 8 8 0 16
12. Jakub Michna GMK Bílovec 0 7 8 0 15

Vít Úlehla GJŠ Přerov 0 7 8 0 15
14. Jaroslav Hradil GJŠ Přerov 0 4 8 0 12
15. Matyáš Florík GMK Bílovec 3 4 1 0 8

Alexandra Kahr Graz Allstars+ 0 8 0 0 8
17. Sebastian Grosinger Graz Allstars 6 0 1 0 7
18. Melinda Bauer Graz Allstars+ 5 0 0 0 5
19. Klara Balic Graz Allstars 0 1 3 0 4

Amálie Dostalíková GJŠ Přerov 0 4 0 0 4
21. Johannes Trattner Graz Allstars+ 0 1 0 0 1
22. Lukas Novak Graz Allstars 0 0 0 0 0

Tomasz Szafarczyk AZSO Chorzów 0 0 0 0 0
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Category C (Individual Competition)

Rank. Name School 1 2 3 4
∑

1. Anna Szymik AZSO Chorzów 8 7 8 8 31
2. Wojciech Socha AZSO Chorzów 8 8 8 5 29
3. Štěpán Postava GMK Bílovec 5 6 8 6 25
4. Flavio Arrigoni BRG Kepler 8 1 7 8 24
5. Matyáš Khýr GMK Bílovec 8 0 8 7 23
6. Lucie Dorazilová GJŠ Přerov 6 1 8 6 21

Darian Poljak GJŠ Přerov 8 5 6 2 21
8. Anna Krzywiecka AZSO Chorzów 8 0 1 8 17
9. Markus Auer Graz Allstars 8 0 5 3 16

Darius Buze Graz Allstars 8 0 0 8 16
11. Matteo Valentini BRG Kepler 8 1 0 6 15
12. Michal Bravanský GMK Bílovec 8 1 0 4 13
13. Sebastian Andritsch BRG Kepler 5 0 3 4 12
14. Inbal Rosenmann BRG Kepler 3 0 0 8 11
15. Marta Čermáková GMK Bílovec 8 2 0 0 10

David Tobolík GJŠ Přerov 8 0 0 2 10
17. Aleksandra Bedlicka AZSO Chorzów 2 0 0 6 8

Gabriel Nitsche Graz Allstars 8 0 0 0 8
Vendula Onderková GJŠ Přerov 8 0 0 0 8
Celina Rinner Graz Allstars+ 8 0 0 0 8
Leon Wissounig Graz Allstars 8 0 0 0 8

22. Sarah Viertler Graz Allstars+ 0 0 0 5 5
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Category A (Team Competition)
Rank. School 1 2 3

∑
1. Chorzów 8 7 8 23
2. Kepler 8 6 8 22
3. Přerov 8 2 1 11
4. Bílovec 4 3 2 9
5. Allstars 1 0 1 2

Category B (Team Competition)
Rank. School 1 2 3

∑
1. Kepler 8 0 8 16

Allstars 8 0 8 16
3. Přerov 4 0 8 12
4. Chorzów 8 0 3 11
5. Bílovec 3 0 6 9
6. Allstars+ 1 1 6 8

Category C (Team Competition)
Rank. School 1 2 3

∑
1. Bílovec 8 8 7 23
2. Chorzów 8 6 8 22
3. Přerov 8 3 4 15
4. Allstars 1 8 0 9
5. Kepler 3 0 0 3
6. Allstars+ 0 0 0 0
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