
The Mathematical Duel

Problems on Numbers with Interesting Digits
some problems from the Mathematical Duel
B́ılovec - Chorzów - Graz - Přerov
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C Team, Problem 2, 2013

We consider positive integers that are written in decimal notation
using only one digit (possibly more than once), and call such
numbers uni-digit numbers.
a) Determine a uni-digit number written with only the digit 7 that
is divisible by 3.
b) Determine a uni-digit number written with only the digit 3 that
is divisible by 7.
c) Determine a uni-digit number written with only the digit 5 that
is divisible by 7.
d) Prove that there cannot exist a uni-digit number written with
only the digit 7 that is divisible by 5.



C Team, Problem 2, 2013, Solution

a) 777 = 7 · 111 = 7 · 37 · 3.

b) 333333 = 333 · 1001 = 333 · 7 · 11 · 13.

c) 555555 = 555 · 7 · 11 · 13.

d) The last digit of any number divisible by 5 is always either 0 or
5. Any number that is divisible by 5 can therefore not be written
using only the digit 7. �
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B Individual, Problem 4, 2013

We call a number that is written using only the digit 1 in decimal
notation a onesy number, and a number using only the digit 7 in
decimal notation a sevensy number. Determine a onesy number
divisible by 7 and prove that for any sevensy number k , there
always exists a onesy number m such that m is a multiple of k.



B Individual, Problem 4, 2013, Solution 1/2

onesy numbers: 111 . . . 111

not divisible by 7: 1; 11; 111 = 3 · 37; 1111 = 11 · 101

A possible onesy number divisible by seven is given by
111111 = 111 · 1001 = 111 · 7 · 11 · 13. �
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B Individual, Problem 4, 2013, Solution 2/2

sevensy number: k = 777 . . . 777

In order to see that there always exists a onesy multiple of any
sevensy number k , note that there exist an infinite number of onesy
numbers. By the Dirichlet principle, there must therefore exist two
different onesy numbers m1 > m2 with m1 ≡ m2 (mod k).
m1 = 11111 . . . 111
m2 = 111 . . . 111

m1 −m2 = 11 · · · 1100 . . . 00

It therefore follows that m1 −m2 is divisible by k. The number
m1 −m2 can be written as m1 −m2 = m · 10r , where m is also a
onesy number. Since k is certainly not divible by 2 or 5, it follows
that m must also be divisible by k , and the proof is complete. �
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B Team, Problem 1, 2005

a) A number x can be written using only the digit a both in base 8
and in base 16, i.e.

x = (aa . . . a)8 = (aa . . . a)16.

Determine all possible values of x .

b) Determine as many numbers x as possible that can be writen in
the form x = (11 . . . 1)b in at least two different number systems
with bases b1 and b2. (author unknown)



B Team, Problem 1, 2005, Solution 1/2

a). If (aa . . . a)8 = (aa . . . a)16 holds, there exist m and n such that

a ·16m + a ·16m−1 + · · ·+ a ·16 + a = a ·8n + a ·8n−1 + · · ·+ a ·8 + a

holds.

This is equivalent to

16m + · · ·+ 16 = 8n + · · ·+ 8 ⇐⇒ 16 · 16m − 1

16− 1
= 8 · 8n − 1

8− 1

⇐⇒ 2 · 16m − 1

15
=

8n − 1

7
⇐⇒ 2 · 16m − 2

15
=

8n − 1

7

⇐⇒ 14 · 16m − 14 = 15 · 8n − 15 ⇐⇒ 15 · 8n = 14 · 16m + 1.

The right side is odd. Therefore, we have n = 0, and m = 0. The
only possible values of a are a ∈ {0, 1, 2, . . . , 7}, and we therefore
have x ∈ {0, 1, 2, . . . , 7}. �
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B Team, Problem 1, 2005, Solution 2/2

b) If x = (11 . . . 1)b1 = (11 . . . 1)b2 , we have x = 1 or b1, b2 > 1.

Assume 1 < b1 < b2. We want

x =
m∑
i=0

bi
1 =

n∑
j=0

bj
2 with m > n.

For any b1 > 1 choose b2 =
∑m

i=1 bi
1. Then

(11)b2 = 1 · b2 + 1 · b0
2 =

m∑
i=1

bi
1 + 1 · b0

1 =
m∑
i=0

1 · bi
1 = (11 . . . 1)b1 ,

and we have infinitely many x with the required property. �



B Team, Problem 1, 2005, Solution 2/2

b) If x = (11 . . . 1)b1 = (11 . . . 1)b2 , we have x = 1 or b1, b2 > 1.

Assume 1 < b1 < b2. We want

x =
m∑
i=0

bi
1 =

n∑
j=0

bj
2 with m > n.

For any b1 > 1 choose b2 =
∑m

i=1 bi
1. Then

(11)b2 = 1 · b2 + 1 · b0
2 =

m∑
i=1

bi
1 + 1 · b0

1 =
m∑
i=0

1 · bi
1 = (11 . . . 1)b1 ,

and we have infinitely many x with the required property. �



B Team, Problem 1, 2005, Solution 2/2

b) If x = (11 . . . 1)b1 = (11 . . . 1)b2 , we have x = 1 or b1, b2 > 1.

Assume 1 < b1 < b2. We want

x =
m∑
i=0

bi
1 =

n∑
j=0

bj
2 with m > n.

For any b1 > 1 choose b2 =
∑m

i=1 bi
1. Then

(11)b2 = 1 · b2 + 1 · b0
2 =

m∑
i=1

bi
1 + 1 · b0

1 =
m∑
i=0

1 · bi
1 = (11 . . . 1)b1 ,

and we have infinitely many x with the required property. �



A Team, Problem 3, 2013

We call positive integers that are written in decimal notation using
only the digits 1 and 2 Graz numbers. Note that 2 is a 1-digit Graz
number divisible by 21, 12 is a 2-digit Graz number divisible by 22

and 112 is a 3-digit Graz number divisible by 23.
a) Determine the smallest 4-digit Graz number divisible by 24.
b) Determine an n-digit Graz number divisible by 2n for n > 4.
c) Prove that there must always exist an n-digit Graz number
divisible by 2n for any positive integer n.



A Team, Problem 3, 2013, Solution

some 4-digit candidates: 2222, 1212, 2112

2222 = 2 · 1111, 1212 = 22 · 303, 2112 = 64 · 33 = 26 · 33

We can prove by induction that there in fact exists a unique n-digit
Graz number for any positive integer n. Obviously, 2 is the only
1-digit Graz number, as 1 is not divisible by 21, but 2 is. We can
therefore assume that there exists a unique k-digit Graz number g
for some k ≥ 1. Since g is divisible by 2k , either g ≡ 0
(mod 2k+1) or g ≡ 2k (mod 2k+1) must hold. Since 10k ≡ 2k

(mod 2k+1) and 2 · 10k ≡ 0 (mod 2k+1), we have either
10k + g ≡ 0 (mod 2k+1) or 2 · 10k + g ≡ 0 (mod 2k+1), and
therefore the unique existence of an n − 1-digit Graz number.
It is now easy to complete the solution. Since 112 is the 3-digit
Graz number, and 112 = 16 · 7 is divisible by 16, 2112 is the
4-digit Graz number. Since 2112 = 32 · 66 is divisible by 25 = 32,
22112 is the 5-digit Graz number, and the solution is complete. �
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C Individual, Problem 3, 2011

Determine the number of ten-digit numbers divisible by 4 which
are written using only the digits 1 and 2. (Józef Kalinowski)



C Individual, Problem 3, 2011, Solution

for instance: 2212211112 = 4 · 553052778

Any ten-digit number n divisible by 4 must end in a two-digit
number divisible by 4. The last two digits of any such number
written only with the digits 1 and 2 can therefore only be 12, in this
order. Each of the eight other eight digits of the ten-digit number
can be either 1 or 2. Altogether, this gives us 28 possibilities.

There therefore exist 28 = 256 ten-digit numbers with the given
property. �
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B Individual, Problem 1, 2011

Let A be a six-digit positive integer which is formed using only the
two digits x and y . Furthemore, let B be the six-digit integer
resulting from A if all digits x are replaced by y and simultaneously
all digits y are replaced by x . Prove that the sum A + B is divisible
by 91. (Józef Kalinowski)



B Individual, Problem 1, 2011, Solution

for example: 229299 + 992922 = 1222221 = 91 · 13431

Let A = c5c4c3c2c1c0 and B = d5d4d3d2d1d0, where
ci , di ∈ {x , y}, ci 6= di for i = 0, 1, 2, 3, 4, 5 and x , y ∈ {1, . . . , 9}
are distinct non-zero decimal digits.
Since ci + di = x + y 6= 0 for i = 0, 1, 2, 3, 4, 5 we have

A + B = (x + y) · (105 + 104 + 103 + 102 + 10 + 1) =

= (x + y) · 111111 = (x + y) · 91 · 1221,

The number A + B is therefore certainly divisible by 91. �
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C Team, Problem 1, 2010

Determine the number of pairs (x , y) of decimal digits such that
the positive integer in the form xyx is divisible by 3 and the
positive integer in the form yxy is divisible by 4. (author unknown)



C Team, Problem 1, 2010, Solution

example: 525 = 3 · 175 and 252 = 4 · 63.

Each positive integer in the form yxy is divisible by 4 if and only if
the number xy is divisible by 4 with y 6= 0. Hence

(x , y) ∈ {(1; 2), (1; 6), (2; 4), (2; 8), (3; 2), (3; 6), (4; 4), (4; 8), (5; 2), . . .

. . . , (5; 6), (6; 4), (6; 8), (7; 2), (7; 6), (8; 4), (8; 8), (9; 2), (9; 6)}.

A positive integer in the form xyx is divisible by 3 if and only if the
sum of its digits is divisible by 3, i.e. 2x + y must be divisible by 3.
After checking all possible pairs of positive integers we obtain only
six possibilities:

(x , y) ∈ {(2; 8), (3; 6), (4; 4), (5; 2), (8; 8), (9; 6)}.

We therefore have 6 solutions altogether. �
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B Team, Problem 3, 2015

Determine the number of all six-digit palindromes that are divisible
by seven.
[Remark. A six-digit palindrome is a positive integer written in the
form abccba with decimal digits a 6= 0, b and c .] (Pavel Calábek)



B Team, Problem 3, 2015, Solution

We have
abccba = 100001a + 10010b + 1100c

= 7(14286a + 1430b + 157c)− (a− c).

Such a number is divisible by 7 iff (a− c) is divisible by 7.

a 6= 0 and c are decimal digits, and we therefore have
−8 ≤ a− c ≤ 9. The only possible values are therefore
(a− c) ∈ {−7, 0, 7}.
For a− c = −7 we have (a, c) ∈ {(1, 8), (2, 9)},
for a− c = 0 we have (a, c) ∈ {(1, 1), (2, 2), . . . , (9, 9)}
and finally for a− c = 7 we have (a, c) ∈ {(7, 0), (8, 1), (9, 2)},
and therefore 14 possibilities for the ordered pair (a, c).
In all cases b is an arbitrary digit, and altogether there are therefore
14 · 10 = 140 six-digit palindromes which are divisible by 7. �
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In all cases b is an arbitrary digit, and altogether there are therefore
14 · 10 = 140 six-digit palindromes which are divisible by 7. �
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C Individual, Problem 3, 2012

Two positive integers are called friends if each is composed of the
same number of digits, the digits in one are in increasing order and
the digits in the other are in decreasing order, and the two
numbers have no digits in common (like for example the numbers
147 and 952).
Solve the following problems:
a) Determine the number of all two-digit numbers that have a
friend.
b) Determine the largest number that has a friend.



C Individual, Problem 3, 2012, Solution 1/2

a) Every two-digit number n which is composed of different digits,
has its digits in increasing or decreasing order. Moreover there are
at least two non-zero digits a and b different from the digits of n.
It follows, that the friend of n is one of numbers ab or ba.

The number of two-digit numbers with a friend is therefore equal
to the number of two-digit numbers composed of different digits.
There are 90 two-digit numbers of which 9 (11, 22, . . . , 99) consist
of two identical digits. There are therefore 81 two-digit numbers
which have a friend. �
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It follows, that the friend of n is one of numbers ab or ba.
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C Individual, Problem 3, 2012, Solution 2/2

b) If the number with a friend has k digits, its friend also has k
different digits and together they have 2k different digits. Since
there are 10 digits, the largest number with a friend has at most 5
digits.

No number begins with 0, so 0 is in a number with digits in
decreasing order if k = 5. Moreover, if a number n with digits in
increasing order has a friend k , its mirror image (that is, the
number with the same digits in opposite order) is greater and has a
friend (namely the mirror image of k).
The largest number with a friend has different digits in decreasing
order, it has at most five digits and one of its digits is 0. The
largest such number is therefore 98760 and its friend is 12345. �
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C Team, Problem 3, 2015

A wavy number is a number in which the digits alternately get
larger and smaller (or smaller and larger) when read from left to
right. (For instance, 3629263 and 84759 are wavy numbers but
45632 is not.)
a) Two five-digit wavy numbers m and n are composed of all digits
from 0 to 9. (Note that the first digit of a number cannot be 0.)
Determine the smallest possible value of m + n.
b) Determine the largest possible wavy number in which no digit
occurs twice.
c) Determine a five-digit wavy number that can be expressed in the
form ab + c , where a, b and c are all three-digit wavy numbers.



C Team, Problem 3, 2015, Solution

a) The smallest possible sum is given by the expression

20659 + 14387 = 35046.

b) The largest such number is 9785634120.

c) There are many such combinations. Examples are

120 · 142 + 231 = 17271 or 101 · 101 + 101 = 10302.
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